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ABSTRACT

The primary purpose of this thesis is to explore and discuss
the hardware design of a bus-oriented microprocessor system. A
bus-oriented microprocessor system permits it to be expanded to a
multi-processor system. Through the use of a bus controller and
bus arbiter, as discussed in this thesis, the necessary logic is in
place to control bus access by system users. Bus access may be
initiated to share another sub-system’s resource, such as memory.
To accommodate memory sharing between two systems, a dual-port
memory controller can be used to resolve memory access between the
two systems. This thesis discusses the design of a MC68010
microprocessor system integrated on the VMEbus with dual-ported
memory capability. Additional features of the MC68010
microprocessor system include memory-management and interrupt
control. The memory-management features permit protected memory
and virtual-memory to be implemented on the system, while an
interrupt handler is used to assist the MC68010 microprocessor in

exception processing.
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I. INTRODUCTION

Economic pressure constantly forces computer design and
technology to produce more cost-effective system implementations.
Computers are made more cost-effective by lowering operating cost
through increased speed and power and by lowering design,
maintenance and upgrade costs through modular design techniques.
Architectural innovations can accelerate this process. Hence, new
innovations in system architecture are constantly sought after.
Architecture is used here to mean the structuring of the modules
which are organized into a computer system [Ref. 1l:p. 1]. These
modules include processors, memory and input/output (I/0) devices.

A uni-processor system consists of a single processor subsystem
and various supporting modules integrated to form a system. In
contrast, a multi-processor system is comprised of two or more
processor subsystems connected into one interrelated functional
system. In a multi-processor system, the interconnection of the
processor subsystems must be done in such a way as to maintain
control and manage the data flow of the entire system. This may be
accomplished through multi-ported memory, a serial link or as in
this thesis, by a system bus. A number of computer architectural
designs that accommodate growing needs are examined in this thesis.
Key architectural features of bus structures, memory-management and

interrupt control are described in this chapter.




Bus structures allow for the integration of peripherals, memory
and application-specific boards into one coherent cystem. Bus
structures permit the exchange of data and control signals between
circuit boards. This allows circuit boards to communicate with
each other and to share rzsources. However, a strict adherence to
protocols must be maintained so the integrity of information and
control is preserved.

Memory-management features include memory protection and
virtual-memory. Special memory schemes have been used to protect
a system’s integrity, to make more effective use of its physical
memory’s address range and to permit multi-ported memory so that
the memory resource can be shared in a multi-processor system. A
memory protection scheme prevents users from inadvertently or
maliciously tampering with the operating system, its associated
memory-mapped hardware or other users. To accomplish this, a
portion of the processor’s address range can be reserved for the
operating system, while the remaining portion is allocated to
system users. The operating system is protected because the user
is not permitted to cross into the operating system’s memory.

The virtual-memory aspect of memory-management permits a
greater dynamic range and flexibility for user memory than actually
exists with the system’s physical memory. Virtual-memory allows
each user to run programs as if he or she has full use of the
processor’s address range, independent of the memory used by the
operating system or the other users. The user is unaware of how

the physical memory in the system is allocated. Therefore, memory




resources can be allocated automatically and respond to the dynamic
needs of the operating system and the users. 1In a system without
virtual-memory, programs must be executed in a specific memory
space and for large programs, the user must provide complex overlay
schemes to circumvent the fixed user memory allocation. It is
difficult for such a system to support several large programs
concurrently. In a virtual-memory system, the operating system
breaks up the user’s program into segments called pages and moves
these pages as needed between physical memory and a secondary
storage device such as a hard disk. Thus, a virtual-memory system
can easily support several large programs concurrently as long as
each program only requires a modest amount of memory at any given
time.

Multi-ported memory, such as dual-ported memory, allows a
common memory resource to be shared between two or more processors
or peripheral devices. Thus, different processes or different
processors can communicate with each other via a multi-ported
memory mailbox equipped with an accompanying semaphore to maintain
access control and data integrity. Also, multi-porting provides a
communication link between tightly coupled systems where there is
a high degree of interaction.

Interrupts optimize the performance of a processor. An
interrupt is a control signal generated asynchronously by a device,
such as a serial port, requesting service from the processor. The
processor is free to process other tasks between interrupts from

devices requiring service [Ref. 2:pp. 220-223]). When it is ready




to service an interrupting device, the processor saves its current
state and then performs the servicing tasks. When the servicing
tasks are completed, the saved state of the processor is restored
and the operation prior to the interrupt is resumed. Consequently,
the processing power of the processor is increased because the
overhead from polling peripheral devices for a service request is
eliminated.

In a general sense, a generic multi-processor system can be
viewed as illustrated in Figure 1.1. Various subsystems such as
data processing, storage and data communications are integrated
along a system bus to make up a complete system. Each subsystem is
comprised of memory, I/0 and processor modules configured to
accommodate the unigue requirements of the users of the multi-
processor system. A system controller acts as the arbiter for the
entire system. The system controller directs the information flow,
much as a traffic policeman directs traffic, between the various
subsystems along the system bus to ensure that the system is
properly coordinated. 1In order for each subsystem to have access
to the system bus, logic must be incorporated within each subsystem
to allow it to interface to the system bus.

The main thrust of this thesis is to explore the concepts of
bus structure, memory-management and interrupt control. These
concepts are addressed in a greater depth than would be possible in

a classroom environment.
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Figure 1.1: Generic Multi-Processor System




II. DESIGN CONCEPTS

The concepts addressed in this thesis are 1limited to bus
structure organization, memory-management and interrupt control.
These features are commonly used in today’s processor systems.
However, many options are available within each area. This thesis
design 1is a virtual-memory implementation of a MCé68010-based
microprocessor system integrated on the VMEbus with dual-ported
memory capability.

Borrill [Ref. 3] highlights several advantages of the VMEbus.
The VMEbus, through its non-multiplexed address lines and data
lines, does not have multiplexing delays as do other buses, nor
does it have the transactional protocol overheads as do some other
buses. In addition, the non-multiplexed address lines will support
address pipelining. For interested readers, Borrill has made a
detailed comparison of the features and performance of the VMEbus,
Futurebus, Multibus II, Nubus and Fastbus [Ref. 3].

In addition to the advantages that Borrill highlights, the
VMEbus structure was selected because of the relative ease of
integrating Motorola and Signetics peripheral hardware devices.
These hardware devices include a memory management unit, VMEbus
controller, bus arbiter, interrupt handler hardware and dual-port
dynamic random access memory (DR2!) controller.

The following discussion presents a broad overview of the

VMEbus structure and memory-management. This should facilitate




understanding of the concepts that are incorporated into the final

system (master circuit board) design.

A. VMEbus SPECIFICATION
1. Background

The VMEbus specification originated with Motorola’s 68000
microprocessor products. The 68000 series was introduced to the
marketplace in the late 1970s, using the VERSAbus specification.
In the early 1980s, Motorola’s European Microsystems group in
Munich, Germany, introduced the Eurocard version of the VERSAbus,
referred to as the VERSAbus-E specification. A joint agreement was
reached to adopt the VERSAbus-E as the baseline bus specification
for Motorola 68xxx devices with Mostek and Signetics as second-
source suppliers of the 68xxx family of devices. The VERSAbus-E
was renamed the VMEbus. The VMEbus specification [Ref. 4]
delineates the mechanical and electrical characteristics of the bus
and the protocols to interface devices on the VMEbus.

2. VMEbus Description

The VMEbus offers a versatile combination of timing
strategies and support features. It also offers several data
transfer sizes, several addressing modes and several arbitration
methods. The VMEbus is an asynchronous, non-multiplexed bus that
accommodates 8, 16 and 32-bit data transfers. [Ref. 5]

Asynchronous data transfers are flexible and do not impose
timing control signals. Completion signals from the asynchronous
devices ensure that adequate time is allowed for the data transfer.
In contrast, synchronous data transfers impose a timing constraint
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on the data transfer which must accommodate the slowest device
attached to the bus.

A non-multiplexed bus 1is one that accommodates data
transfers and address transfers as separate signals on separate
lines of the bus. This contrasts with the multiplexing strategy
where data signals and address signals share the same set of lines.
As a simple description, during a write cycle, multiplexing address
signals are gated on one clock cycle and data signals are gated on
the same 1lines during a subsequent c¢lock cycle. The non-
multiplexing strategy speeds up data transfer by eliminating the
second clock cycle.

The VMEbus can be used with 24 or 32 address lines
depending on the microprocessor’s requirements and it is easily
adaptable to the entire family of Motorola 68xxx microprocessors
and peripherals.

The VMEbus is composed of four sub-buses that play unique
roles within the overall VMEbus functional structure. These
include the data transfer bus (DTB), the data transfer arbitration
bus, the priority interrupt bus and the utility bus. The VMEbus
functional specification describes how each sub-bus interacts and
the rules which govern the behavior of each sub-bus [(Ref. 4:pp. 15-
194]. The DTB provides the pathways for the data signals, the
address signals and their associated control signals. The process
of resolving bus ownership takes place on the data transfer
arbitration bus. The priority interrupt bus is used to accommodate

processes which request servicing from another subsystem. An




interrupt stops normal bus activity until the interrupt is
serviced. The utilities bus 1is sometimes referred to as a
"miscellaneous functions bus". It includes a system reset line, an
alternating current (AC) power failure line, a system failure line
and a system clock [Ref. 2:p. 475].

The design in this thesis uses the VMEbus controller and
the interrupt handler hardware devices which are designed for use
with the VMEbus.

3. Configurations

In a multi-processor VMEbus-based system with a variety of
peripheral devices, each subsystem can fulfill one of three primary
roles. The subsystem can serve as a slave-only, as a master-only
or as a master-slave combination. A subsystem can also have the
role of direct memory access (DMA) in a master-slave configuration.
(To limit the size and complexity of this thesis, the DMA master-
slave configuration is not discussed.) These roles determine the
way the subsystem is integrated to the system bus.

a. Slave-Only Application

In the slave-only configuration, the subsystem 1is
slaved to the VMEbus. In other words, this subsystem is incapable
of making a request to obtain access and control of the VMEbus.
The slave subsystem is a device which other subsystems utilize.
Examples of slave subsystems include communication ports and stand
alone memory boards. If intelligence (logic) 1is added, the
subsystem can evolve into an input/output (I/0) channel or a mass

storage subsystem. Figure 2.1 shows the simplicity of a slave




subsystem interfaced to the VMEbus. The 74LS245s octal-bus
transce .vers with 3-state outputs provide the drive capability for
transmitting signals onto the VMEbus and the receiver capability
for receiving signals from the VMEbus. If desired, the 74LS245s
can also be disabled to isolate the slave subsystem from the

VMEDbus.

SLAVE SUBSYSTEM

SLAVE
DEVICE (S)

74L5245s

VMEbus

Figure 2.1: Slave-Only Subsystem

b. Master-0Only Application
In the master-only configuration, the subsystem has the
ability to gain control of the VMEbus. A master-only subsystem has
an onboard central processor unit (CPU) with or without local slave
devices. It is interfaced to the VMEbus with a bus controller.
When the subsystem has gained control of the VMEbus, this subsystem
is said to be in a master role. Figure 2.2 gives a simplified

illustration of a VMEbus system with a master-only subsystem
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attached to it. Comparison of Figures 2.1 and 2.2 shows the added
complexity required in a subsystem which can gain control of the
VMEbus. In addition, a system controller is included in Figure 2.2

to illustrate the added system complexity required to control bus

accesses.

SYSTEM CONTROLLER MASTER SUBSYSTEM
CpPU LOCAL
—l DEVICES

BUS BUS
ARBITER CONTROLLER *—————1
l |
74LS244s 741.5245s
|
VMEbus

Figure 2.2: Master-Only Subsystem

Given a request by the CPU, the bus controller
generates a bus request signal through an 74LS245 to the system
controller’s bus arbiter, (The abilities of the 74LS245 were
described in the slave-only subsystem.) The bus arbiter receives
requests from subsystems on the VMEbus through the 74LS244 octal-
buffers and line drivers with 3-state outputs. The function of the
bus arbiter is to resolve prioritized requests from the subsystems

and to generate a bus grant signal through the 74LS244 to the

11




highest priority requesting subsystem. The subsystem’s bus
controller maintains system integrity by ensuring that a bus grant
signal 1is received prior to permitting a data transfer. The
requesting subsystem, after receiving the bus grant signal, negates
its bus request and asserts the bus busy signal so that other
subsystems cannot gain control of the bus while the data exchange
is in process. Also, the bus busy signal informs the bus arbiter
that a data exchange is currently in progress and that the bus
arbiter can release the bus grant signal. The requesting device is
now the bus master. When the data exchange 1is complete, the
requesting device releases the bus busy signal to allow the bus
arbiter the opportunity to grant the bus to another subsystem.

If the bus is in use and a higher priority bus request
is asserted, the bus arbiter asserts the bus clear line. The bus
clear signal informs the current bus master that another subsystem
with a higher priority is requesting bus ownership. Each potential
bus master should accommodate either a "release when done" or a
"release on request" strategy to resolve pending higher priority
requests for bus access.

C. Master-Slave Application

A master-slave configuration combines the master-only
and slave-only capabilities into a single subsystem. As
illustrated in Figure 2.3, the CPU residing on the master-slave
subsystem has the ability to gain control of the VMEbus. The
system controller and bus arbiter perform the same roles as

described in the master-only subsystem.
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Shared slave devices are onboard the master-slave
subsystem. These devices can be accessed by another subsystem when
it has control of the VMEbus (Fig. 2.3). The bus controller
isolates the shared slave devices from the CPU by putting the
74L5244s outputs into a high impedance state, whenever another
subsystem accesses the shared slave devices. When this happens,
the shared slave devices become a global asset to the system. The

74LS245s not only act as line drivers and receivers,

SYSTEM CONTROLLER MASTER-SLAVE SUBSYSTEM
CpPU LOCAL
~] r———— DEVICES
BUS BUS ]
ARBITER CONTROLLER T 741L5244s
I
SHARED
SLAVE
DEVICES
741.5244s 741.5245s
VMEDbus

Figure 2.3: Master-Slave Subsystem

they also prevent access from the VMEbus to shared slave devices

when the appropriate control signal 1is asserted by the bus
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controller. Whenever the local master (in this case the CPU) is
accessing the shared slave devices, these devices become a local
asset. As discussed in the master-only application, the bus
controller preserves the VMEbus protocol.

4. Arbitration Protocols

Arbitration protocols ensure conflict-free access to the
system bus from all subsystems and are crucial in a multi-
processor environment [Ref. 6:p. 100]. An arbitration protoccol
ensures that only one bus master has access to the bus at a time,
thus safeguarding the bus from ccllisions in which information is
transferred on the bus by multiple sources. The VMEbus supports
both serial and parallel arbitration schemes or a combination of
both methods. These two method are described in the following
paragraphs.

Daisy chaining is a method of arbitrating a shared
communication bus by serial prioritization. Figure 2.4 illustrates
daisy chain arbitration. If the bus is in use, any subsystem
requesting ownership must wait till the present bus master
relinquishes control of the bus. A subsystem requests access to
the bus by asserting the bus request (BR) signal. The bus arbiter
or other controlling device acknowledges the bus reguest by
asserting a bus grant (BG) signal to the bus grant input (BGIN) of
SUBSYSTEM1, the first subsystem in the daisy chain. If SUBSYSTEM1
is requesting the bus, it asserts the bus busy (BBSY) signal and it
continues to negate its bus grant output (BGOUT) signal.

SUBSYSTEM1 can now begin data transfer. If the bus request was
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made by any subsystem other than SUBSYSTEM1, the BG signal is
passed by SUBSYSTEM1 to the next subsystem in the chain
(SUBSYSTEM2) . The BGOUT signal from SUBSYSTEM1 becomes the BGIN
signal to the next subsystem in the chain (SUBSYSTEMZ2). This
process is repeated until the highest priority requesting subsystem
receives the BGIN signal. SUBSYSTEM1 has a higher priority than
SUBSYSTEM2. The last subsystem in the chain (SUBSYSTEMn) has the

lowest priority.

BUS SUBSYSTEM1 SUBSYSTEM?2 SUBSYSTEMnN
ARBITER

BGOUT BGOUT BGOUT

BGIN BGIN BGIN

BBSY

BR

DATA

Figure 2.4: Daisy Chain Arbitration

The BR and BBSY signals are wire-ORed (open collector-
active low), i.e., the logic is tied together at a wire connection.
Consequently, the BR signal will cause the BBSY signal to be
asserted once the BGIN signal is received through the daisy chain.

Parallel arbitration is a method of arbitrating a shared
communication bus by priority levels. An example of a three-level

parallel arbitration scheme is shown in Figure 2.5. In Figure 2.5,

15




bus request zero (BR0) has the lowest priority level, while bus
request two (BR2) has the highest priority level. The highest
priority subsystem with a pending request is granted access to the
bus. In this parallel arbitration scheme, the subsystems desiring
use of the bus make bus requests (BRx) through the bus arbiter.
The bus arbiter or other controlling device then sends out a bus
grant (BGx) onto the bus to the highest priority subsystem with a

pending bus request.

BUS SUBSYSTEM2 SUBSYSTEM1 SUBSYSTEMO
ARBITER

e
BG2
BR1
BG1
BRO
BGO

DATA DATA

Figure 2.5: Parallel Arbitration

The main advantage of the daisy chain arbitration scheme
over the parallel arbitration scheme is that subsystems can be
inserted sequentially, one after the other. Consequently, new
subsystems are easily added to the system.

The main advantage of the parallel arbitration scheme over
the daisy chain arbitration scheme is that arbitration can be
performed faster. Parallel arbitration does not propagate a bus
grant signal down a chain, but rather the bus grant signal is sent
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directly to the highest priority subsystem requesting service.
However, the parallel arbitration scheme limits the number of
subsystems that the bus arbiter can accommodate.

Any fixed priority arbitration cannot ensure that the
subsystem with the lowest priority level will be serviced if higher
priority subsystems make frequent requests. The daisy chain
arbitration and parallel arbitration methods may need to be
modified or a controller may need to be incorporated to ensure each
subsystem can be serviced fairly.

The VMEbus uses a serial-parallel combination for bus
arbitration with only one bus arbiter. VMEbus arbitration uses a
scheme with four parallel priority levels similar to Figure 2.5.
Each priority level, however, can have subsystems daisy-chained as
illustrated in Figure 2.4. 1In other words, the bus arbiter grants
bus access to a given level and then the daisy chain at that level
determines which subsystem actually gets the bus.,.

The VMEbus arbitration process includes the BBSY signal (as
shown in Figure 2.4) and the bus clear (BCLR) signal. The BBSY and
BCLR lines are added to the bus arbiter and all subsystems on the
VMEbus. The VMEbus BBSY signal is asserted by the subsystem which
is granted bus access. The BCLR output signal informs all
subsystems on all priority 1levels that a subsystem on a higher
priority level than the current bus master has requested access to
the VMEbus. As mentioned earlier, the requesting subsystem should
accommodate a "release when done" or "release on request" strategy

to resolve pending higher priority requests for bus access.
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B. MEMORY-MANAGEMENT

Memory-management can employ a combination of methods to
organize the physical memory associated with a microprocessor or
system. These methods effectively free the programmer using the
system, from being concerned where the program code and program
data will reside in memory. This thesis addresses the memory-
management concepts of memory protection, virtual-memory and dual-
ported memory.

1. Memory Protection

One method used to organize the address range of a
microprocessor is to divide its address space into two or more
blocks. Each block of the address space can be designated for a
specific purpose, such as supervisor memory Or user memory.

The MC68010 microprocessor has two modes of operation.
These modes are the user mode and the supervisor mode. The user
mode provides an instruction set for the programmer to accommodate
a majority of applications. The supervisor mode provides
additional instructions and privileges for use by the operating
system and other system-related software [Ref. 7:p. 1-1].

The user memory is the area designated for non-privileged
individuals to use. Such an individual executes programs in the
user mode. The address range for the user is normally limited
because it does not include the addresses associated with the
operating system and the memory-mapped peripherals. Additionally,
the wuser 1is restricted from executing privileged supervisor

instructions. 1In contrast, the operating system executes programs
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in supervisor mode and can address supervisory memory and memory-
mapped peripherals as well as user memory. This segregation of the
supervisor and the user precludes the user from reconfiguring the
system, but still allows the user access to part of the physical
memory and to the computational power of the microprocessor.
Typically, the user must request the operating system to perform
operations which the user is not allowed to perform.
2. Virtual-Memory

Virtual-memory allows programs to be executed which require
more memory space than is physically resident. Therefore, the
maximum program size is not limited by the size of physical memory.
Originally, this method was designed to reduce and more effectively
use memory.

A virtual address is an address located within the address
space of the microprocessor. Consequently, with the MC68010
microprocessor, there exists 16 megabytes of virtual-memory. A
virtual-memory implementation groups the virtual addresses into
blocks called pages. Figure 2.6 shows such a grouping with zero
through N pages of virtual-memory but with only enough physical
memory to accommodate two virtual pages in physical memory. In
Figure 2.6, virtual PAGE 1 and virtual PAGE N are mapped into
separate physical pages.

When the CPU generates a virtual address, the virtual
address 1is translated into a physical address. The address
translation process includes fairly sophisticated memory protection

so0 that tasks cannot interfere with each other or access resources
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not allocated to them. Figure 2.7 illustrates a simplified memory-
mapping mechanism. The high order virtual address bits are
referred to as a virtual page number. The virtual page number
referenc>s a location of the translation table! The translation
table has as its contents a physical page number which references
the starting location of the physical memory’s page address. The
low order virtual address bits give the relative address offset of

the desired address within the physical page selected.

PAGE 0
PAGE 1 PHYSICAL ADDRESS
>
| > <
PAGE N-1 <7
PAGE N

VIRTUAL ADDRESS
Figure 2.6: Virtual-Memory-Mapping
Generally, each processing task has its own translation
table similar to Figure 2.7. These tables are switched whenever

the active task changes which avoids interference between

processing tasks.
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VIRTUAL ADDRESS

HIGH ORDER BITS LOW ORDER BITS
(VIRTUAL PAGE NUMBER)

TRANSLATION TABLE

ADDRESS
PAGE 0 WITHIN
PHYSICAL
PAGE

PAGE N -1

PAGE N

PAGE ADDRESS
SELECTED

<

PHYSICAL ADDRESS

Figure 2.7: Mapping Mechanism

When the CPU generates a virtual address in a page that is
not present in physical memory, for instance PAGE 2 as in Figure
2.7, the memory manager senses that fact and generates a page
fault. The page fault triggers a chain of events which ultimately
retrieves the desired page of the program from secondary storage
and places it in physical memory. The instruction which caused the

page fault is then continued or restarted. [Ref. 2:pp. 326-330]
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3. Dual-ported Memory
Dual-ported memory permits two nearly simultaneous accesses
to the memory resource without conflict. Figure 2.8 illustrates a
typical configuration of a dual-port memory device. One approach
to arbitrating concurrent memory requests in a dual-ported random
access memory (RAM) is to sample one request line on the rising
clock edge and the other on the falling clock edge. A PORT 1

REQUEST is assumed to be sampled on the rising clock edge.

PORT 1 PORT 2
ADDRESS BUS — 74LS244s |—.——— 74LS244s {— ADDRESS BUS
DATA BUS — 74LS245s . 74LS245s |— DATA BUS
CONTROL BUS — 74LS244s .— 74LS244s |— CONTROL BUS
PORT 1 GRANT PORT 2 GRANT
PORT 1 REQUEST — DUAL-PORT — PORT 2 REQUEST

MEIZORY DEVICE
CLOCK —
ADDRESS DATA
BUS BUS
MEMORY

Figure 2.8: Dual-ported Memory

If a PORT 1 REQUEST is asserted, a PORT 1 GRANT is generated which
gates the PORT 1 address, data and control lines through the left-
hand 74LS244s and 74LS245s in Figure 2.8. The address and control
signals are sent to the dual~port memory device and the data
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signals are sent directly to memory. The dual-port memory device
then gates the address lines to memory. While the PORT 1 GRANT is
active, the PORT 2 GRANT cannot be asserted. PORT 2 is thus locked
out from gaining access to memory. In contrast, if a PORT 2
REQUEST is asserted and PORT 1 is inactive, a PORT 2 GRANT is
generated. This causes PORT 2 to gate the control and address
lines through the other 74LS244s to the dual-port memory device and
to gate the data lines directly to memory via the 74LS245s.

In the event that both request lines are active, a PORT 1
GRANT will be generated on the rising clock edge or a PORT 2 GRANT
will be generated on the falling clock edge. The other request is
locked out until the request line of the recognized port is no
longer asserted. The other port will then gain access on the

appropriate clock edge.
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ITI. SYSTEM OVERVIEW

This thesis seeks to design a system that satisfies the design
requirements for a system that can be expanded to a multi-processor
system. Additionally, the subsystem design is interrupt-controlled
with both virtual-memory and dual-ported memory support. This
chapter gives a system perspective on the hardware associated with
the system controller circuit board and master circuit board (Fig.

3.1) integrated to the VMEbus.

A. SYSTEM CONTROLLER CIRCUIT BOARD

The VMEbus specification describes the system controller as a
board which resides in slot one of the VMEbus back plane [Ref. 4:
pp. 51. The system controller circuit board design provides
priority bus access arbitration, a manual system reset and a
interrupt acknowledge (IACK*) daisy chain driver. The system
controller subsystem uses line drivers to buffer the arbitration
signals and IACK* signal on the VMEbus.

1. Priority Bus Arbitration

The Motorola MC68452 Dbus arbitration module (BAM)

peripheral device [Ref. 8] was selected to perform the VMEbus
access arbitration. The BAM is configured to accommodate four bus
request (BRx*) inputs and four bus grant (BGx*) outputs. After
parallel arbitration, a bus grant signal is generated by the BAM at
the level of the highest priority bus request. The bus grant
signal is then daisy chained down on the level of the highest
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priority bus request. This VMEbus arbitration method combines the
advantages of both the daisy <chain arbitration and parallel

arbitration methods discussed in Chapter II.

DEVELOPMENT
SYSTEM
TERMINAL
(?RT and KEYBOARD)
DUART
CrPU DRAM
BAM MMU EPROM
DUAL-PORT DRAM SRAM
IACK* DAISY CONTROLLER
CHAIN DRIVER
VMEbus INTERRUPT
CONTROLLER HANDLER
SYSTEM CONTROLLER MASTER
CIRCUIT BOARD CIRCUIT BOARD
VMEbus

Figure 3.1: System Block Diagram

2. Manual Reset
The manual system reset provides a system-wide master reset
of all devices within all subsystems. Resetting the system re-
initializes various devices within it. This is necessary in order

to restart the system after system failure.
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3. Interrupt Driver
The VMEbus structure provides the IACK* signal daisy chain.
However, a driver 1is provided on the system controller circuit

board to drive the IACK* signal onto the VMEbus.

B. MASTER CIRCUIT BOARD
The master circuit beard is the primary design focus of this
thesis. As shown in Figure 3.1, the master circuit board subsystem
is composed of nine functional blocks. These functional blocks are
the central processor unit (CPU), dual universal asynchronous
receiver/transmitter (DUART), dynamic random access memory (DRAM),
static random access memory {(SRAM), erasable programmable read-only
memory (EPROM), memory management unit (MMU), dual-port DRAM
controller, VMEbus controller and interrupt handler. The master
circuit board is configured in a master-only role as discussed in
Chapter II.
1. Central Processor Unit
The Motorola MC68010, 16-bit CPU, was selected to be the
processing element because it has the necessary features to support
virtual-memory but lacks the addz2 ccmplonity of a 32-bit
architecture. It also affords easier wire-wrap assembly than the
other Motorola CPUs supporting virtual-memory because wire-wrap is
better supported for a dual in-line package (DIP) and there are
fewer data and address signals. The signals and programming
capabilities of the MC68010 microprocessor are discussed in further

detail in Appendix A.
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2. Dual Universal Asynchronous Receiver/Transmitter

Two asynchronous serial (RS-232) ports are implemented with
the Motorola MC68681 DUART. One serial port is configured to drive
a terminal, while the second serial port is used to down-load files
from an IBM XT/AT compatible computer. The first serial port is
used to permit a human interface to the system. The intent of the
second serial port is to provide the ability to develop software on
an IBM XT/AT compatible computer with a cross assembler and then to
down-load the software through the second serial port to the master
circuit board’s random access memory (RAM) for testing, debugging
and execution.

3. Erasable Programmable Read-Only Memory

The EPROM in this thesis design, contains the exception
vector table and the monitor/debugger program. The exception
vector table contains the addresses of the routines to be executed
as a result of an interrupt or other exception. The monitor
program configures the subsystem when it is powered up and handles
communications with the terminal for interaction between the
microprocessor and the user. It also provides debugging commands
and coordinates the previously mentioned down-loading of files.
Sixty-four kilobytes of EPROM are provided in the master circuit
board.

Once an operating system is developed, it would not be
desirable to freeze the interrupt part of the exception vector

table into read-only memory (ROM). It should be noted that the
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design of an operating system to take advantage of the system’s
hardware features is beyond the scope of this thesis.
4. Random Access Memory
Sixteen kilobytes of SRAM and one megabyte of DRAM are
provided on the master circuit board.
5. Memory Management Unit
The use of the Motorola MC68451 MMU affords several
advantages to the microprocessor system. The MMU provides the
advantages of virtual-memory and a sophisticated memory protection
scheme (both previously discussed in Chapters I and 1II). The
MC68451 provides the capability to:

- Translate logical addresses to physical addresses.

Provide segment descriptors to implement memory protection.

Detect page faults and other situations requiring operating
system intervention.

Aid the operating system in managing the virtual-memory system
efficiently (by use of the segment status registers).

6. Dual-port DRAM Controller

The Signetics 74F765 dual-port DRAM controller provides
access to the DRAM by either a local bus master or a global bus
master. If DRAM is accessed by the local bus master, i.e., the CPU
on the master circuit board subsystem, it becomes a local asset.
It is not desirable for the local CPU to access DRAM via the VMEbus
because long access times would be the result. If DRAM is accessed
by a global bus master, i.e., another subsystem controlling the
VMEbus, it becomes a global asset. The ability to access DRAM

locally or globally is desirable for a system that includes
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subsystems that interact closely with one another. 1In addition,
the dual-port DRAM controller provides refresh cycles to the
dynamic memory integrated circuit chips.

The global memory accesses in this master circuit board
subsystem design, use physical addresses to permit the
implementation of mailboxes with attached semaphores as discussed
in Chapter I. An operating system needs to lock the mailbox page
in physical memory at a specified physical address.

7. VMEbus Controller

The Signetics SCB68172 VMEbus controller preserves the
VMEbus data transfer and VMEbus access protocols. The VMEbus
controller and the MC68010 CPU are configured in a master-only role
as illustrated in Figure 2.2 and discussed in Chapter II. The
VMEbus controller provides the necessary logic to interface the
master circuit board subsystem to the VMEbus.

8. Interrupt Handler

The Signetics SCB68155 interrupt handler is used in the
master subsystem design to assist the CPU with interrupt
processing. The interrupt handler receives global and 1local
interrupt requests and arbitrates their priority. The arbitration
priority is non-maskable interrupts, first, then local interrupts
and finally global interrupts.

The interrupt handler acts as a mediator between the CPU
and the interrupting device or between the CPU and the interrupting
subsystem. Once a local interrupt is oenerated by the DUART or

MMU, control signals are sent between the interrupting device and
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the interrupt handler as well as between the interrupt handler and
the CPU. The DUART or the MMU responds with a pre-programmed
status/ID vector as an interrupt response.

A subsystem can request an interrupt at any time by
asserting the appropriate interrupt request line. On detecting an
interrupt request, the interrupt handler sends a control signal to
the VMEbus controller to request the VMEbus during the interrupt
acknowledge cycle. The subsystem making the request then sends the

status/ID vector to the master circuit beard’s CPU,.
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IV. DESIGN IMPLEMENTATION

This chapter discusses the design of the minimal system and of
the fully integrated system (master circuit board and system
controller c¢ircuit board). The minimal system provides the
foundation of core resources necessary to construct a computer
system. The fully integrated system design can be implemented by
integrating additional resources to the minimal system. For
comparison, the fully integrated system is illustrated in Figure

3.1, while the minimal system is illustrated in Figure 4.1.

DEVELOPMENT
SYSTEM
TERMINAL
(?RT and KEYBOARD)

DUART

CPU DRAM

EPROM

SRAM

MINIMAL SYSTEM

Figure 4.1: Minimal System
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A. MINIMAL SYSTEM
Currently at the Naval Postgraduate School (NPS), there exists
no computer-aided design (CAD) tools which can simulate the fully
integrated system designed in this thesis. This is in part due to
the inability of the CAD vendors to keep pace with the profusion
of extremely complex very large scale integrated (VLSI) circuit
chips. The CAD systems at NPS, Valid Inc.’s SCALD and Futurenet'’s
CAD50, do not support all the peripheral devices incorporated
within this thesis. Consequently, a step-by-step progression was
made to fully integrate the system. The first stage, referred to
as the minimal system, includes the core resources which form the
foundation to which more complex devices can be added. When more
complexity is added to the minimal system, operational testing can
be conducted to insure proper integration of the new devices into
the system.
1. Memory Map
Memory-mapping determines how the microprocessor accesses
physical memory and peripheral devices. The Motorola MC68010
microprocessor has 23 address lines, Al through A23. The upper
data strobe (UDS*) and lower data strobe (LDS*) lines collectively
determine address bit A0O. Effectively, there are 24 address lines
giving an virtual address range of 16 megabytes. Physical memory
elements such as static random access memory (SRAM), dynamic random
access memory (DRAM) and read-only memory (ROM) are mapped into

this 16 megabyte range as are the memory-mapped peripherals.
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The memory-mapped peripheral devices have multiple internal
registers. The high order physical address bits are used to select
a particular peripheral device. The low order physical address
bits are decoded inside the peripheral device and subsequently
select one of the internal registers. These registers are
programmed to configure the device to meet desired performance
specifications.

Table I displays the specific locations of the minimal
system’s memory-mapped devices and the physical memory components
within the address space of the MC68010 central processor unit

(CPU) .

TABLE I: MINIMAL SYSTEM MEMORY MAP

PHYSICAL
ADDRESS
$000000
64K BYTES OF EPROM
SOOFFFF
$010000
16K BYTES OF STATIC RAM
$013FFF
$014000
NOT USED
$TF6FFF
$7TE7000
MC68681 DUART
$TFTFFF
$7F8000
NOT USED
SFFFFFF

The 64k bytes of erasable programmable read-only memory
(EPROM) contain the exception vector table and the monitor/debugger

program. Appendix B gives the source code listing of the exception
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vector table and the monitor/debugger program. The 2500AD MC68010
cross assembler [Ref. 9], running on an IBM XT/AT compatible
computer, was used to cross assemble the monitor/debugger source
code into a Motorola S-record format [Ref. 10:pp. A-1 - A-4]. 1In
order to program the S-record code into the EPROM, a Data I/0
System 29 Universal Programmer was configured to accept Motorola S-
records. The S-record file was then sent from the IBM XT/AT to the
Data I/0 System 29 via an RS$S-232 interface. Finally, the EPROM
programming process was initiated on the Data I/0O System 28.

The 16K bytes of SRAM are used to test development
software. Files can be down-loaded to the SRAM for debugging.
SRAM is used in the minimal system design instead of DRAM to avoid
the additional logic necessary to generate refresh cycles for the
DRAM.

The MC68681 dual universal asynchronous receiver/
transmitter (DUART) is a communications peripheral device that can
accommodate two independent full-duplex (receiver/transmitter)
ports. The operating mode and data format of each port can be
programmed independently. One port of the DUART is configured by
the monitor/debugger program to accommodate the down-loading of
files from an IBM XT/AT compatible computer. The other port of the
DUART is configured to communicate with the terminal. The memory
map (Table I) delineates a physical address range of $7F7000
through S$7F7FFF for the DUART. A chip select signal will be
generated for the DUART when a physical address is in the range

$7F7000 through S$7F7FFF. The physical addresses in the range
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$7F7010 through $7F7FFF are multiple maps for the DUART. Multiple
maps provide valid addresses to chip select the DUART. They also
permit address decoding logic to be simplified. However, to avoid
ambiguity, only the physical addresses $7F7000 through $7F700F are
used to address the DUART.

2. Hardware Interface

Appendix C illustrates the circuitry involved in the
minimal system. Figures C.1 through C.8 illustrate the minimum
system in its entirety.

Figure C.1 illustrates the MC68010 microprocessor used in
the minimal system design.

Figure C.2 illustrates the HALT* and RESET* generation
circuitry. The NE555 timer provides an automatic system reset when
the system is powered up. There is also a manual system reset
switch (push button). Resetting the system initializes the
internal circuitry of the CPU and DUART. A two-input OR gate in
the reset circuitry has one input grounded, so it acts as an
unneeded buffer, However, in the fully integrated system
(discussed later in this chapter), this input is tied to the VMEbus
system reset (SYSRESET*) line. This permits a system-wide reset to
the master circuit board illustrated in Figure 3.1.

Figure C.3 illustrates the clock generation circuitry. The
8 MHz CPU clock signal is produced by using a 74LS161 binary

counter to divide a 16 MHz signal from a crystal controlled

oscillator. A 4 MHz signal from the 74LS161 provides the clock




input for the shift register which is used to help generate the
data transfer acknowledge (DTACK*) and bus error (BERR*) signals.

Erasable programmable logic devices (EPLDs), specifically
Altera EP310s, were used to reduce the chip count in the minimal
system. EPLDs were used for address decoding, generating DTACK and
BERR signals, performing interrupt control and generating SRAM
write enable and RAM and ROM output enables.

Figure C.4 shows the EPLD implementation for the minimal
system address decoder. The minimal system address decoder
implements the memory map of Table I. Listing D.l1 in Appendix D
presents the Abel software program for the address decoder. Abel
software will be discussed in the next section.

Figure C.5 shows the logic of the circuitry which generates
the DTACK* and BERR* signals to the CPU. The circuitry prior to
the 74LS05 open collector inverters, is implemented by an EPLD.
The DTACK and BERR signals are passed through the 74LS05s to give
the open collector outputs and the proper assertion levels (DTACK*
and BERR*). In the event that the MC68010 microprocessor tries to
address a location not supported by the design, a bus error (BERRY)
time-out signal is generated after two microseconds. The BERR*
signal causes the CPU to begin bus error exception processing.
This invokes the routine whose address is in the 1longword at
address $000008. The circuit which generates the delay time for
BERR* is referred as a watchdog timer. Listing D.2 in Appendix D

presents the Abel description of the DTACK and BERR signals,
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The circuitry for EPROM and SRAM is illustrated in Figure
C.6. Since random access memory (RAM) and ROM cannot generate a
DTACK* signal to the CPU, additional circuitry is required. The
DTACK* signal informs the CPU that the data transfer has been
completed by the slave device. The 74LS164 shift register
generates the data transfer delay times for the RAM and the ROM and
the bus time-out delay for a bus error condition (Fig. C.5). A 250
nanosecond delay is provided to ensure an adequate time for data
transfer between the CPU and the RAM. A 500 nanosecond delay is
provided for data transfer between the CPU and the ROM. These
transfer times accommodate the data propagation delay, the system
address decoding delay and the internal address decoding delay of
the RAM and the ROM. The logic for the output enable and the write
enable signals are implemented on an EPLD. Listing D.3 in Appendix
D presents the Abel description of the SRAM write enable and RAM
and ROM output enable signals.

Figure C.7 shows the logic for the interrupt priority level
(IPLO* through IPL2*) and the interrupt acknowledge (IACK681%*)
signal. A level one interrupt request (HHL) is sent to the MC68010
CPU when the MC68681 DUART asserts its interrupt request output
(low) . An IACK681* signal is sent to the DUART when a level one
interrupt acknowledge is output by the CPU. The logic for the
IACK681* and the IPLO* through IPL2* signals are actually
implemented with an EPLD. Listing D.4 in Appendix D presents the

Abel description of the IACK681* and IPLO* through IPL2* signals.
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Figure C.8 illustrates the circuitry which supports the
dual serial ports. As mentioned earlier, one port (Port A) of the
DUART is configured to communicate with the terminal. The other
port (Port B) is configured by the monitor/debugger program to
accommodate the down-loading of files from an IBM XT/AT compatible
computer.

3. Software Support
a. Exception Vector Table and Monitor/Debugger Program
The exception vector table contains the addresses of
routines to be executed when an exception (trap or interrupt) is
detected. The monitor program sets up communications with the
terminal, provides debugging commands as well as a down-load
command. The exception vector table and the monitor/debugger
program (Appendix B) reside in the EPROM starting at physical
address $000000. The exception vector table occupies physical
addresses $000000 through S$0003FF ([Ref. 7:p. 4-5]. Physical
addresses $000400 through $001FFF are not wused and the
monitor/debugger program begins at the arbitrarily selected
physical address $002000.
The monitor/debugger program was developed on the
Motorola Educational Computer Board (ECB) [Ref. 10]. After a
system reset, the microprocessor’s program counter is initially
loaded with address $002000 to start the monitor/debugger program.
b. Monitor/Debugger Commands
The monitor/debugger program provides a user with six

commands. These commands are not intended to be comprehensive, but
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they do provide assistance in program development and debugging.

The user commands are as follows:

- GO address <,break point address>
- MM start address <,end address>

- MD start address <,end address>

- RCH {Axx, Dxx, PC, US, SP, SR}

- REG
- LOAD
where <...> implies optional
{...} implies select one entry
The GO command 1is used to execute a program that
resides in the system’s memory. The program can be placed in

memory by using the memory modify command or by down-loading a
program from an IBM XT/AT compatible computer. The address in the
GO command gives the location where program execution will begin.
An optional break point address can be added within the GO command.
The break point will stop program execution at the address
specified. This is particularly useful if one desires “o know the
state of the machine, i.e., memory contents or register contents,
at that point.

The memory modify command (MM) is used to modify the
contents of an address or, if desired, a range of addresses. This
command can modify code or data residing in RAM.

The memory display command (MD) is used to display the
contents of an address or a range of addresses, if desired.

The change register command (RCH) is used to modify the
contents of an address register (Axx), a data register (Dxx), the
program counter (PC), the user stack pointer (US), the system stack
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pointer (SP) or the status register (SR). One of these options
must be specified with the RCH command.

The display register command (REG) displays the
contents of the address registers, data registers, program counter,
user stack pointer, system stack pointer and status register. This
information gives the state of the MC68010. This command 1is
particularly useful when a breakpoint is reached in the debugging
process.

The down-load command (LOAD) permits the minimal system
to receive software that was developed on an IBM XT/AT compatible
computer. After code has been assembled and linked using software
such as the 2500AD MC68010 cross assembler, it can be down-loaded
to the absolute address (or addresses) specified during the linking
process.

c. Programmable Logic Device Programming

As already mentioned, EPLDs are used to reduce the chip
count on the printed circuit board. The Data I/0 Abel [Ref. 11]
program was used to compile a high-level language representation of
desired digital logic. The output of Abel is a joint electron
device engineering council (JEDEC) standard file for programming
the EPLDs. This file is then down-loaded to the Data I/0 System 29
Universal Programmer to program the EPLDs. Appendix D shows the
Abel source code that generates the logic implementations discussed

in this chapter and illustrated in Figures C.4, C.5, C.6 and C.7.
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B. FULLY INTEGRATED SYSTEM

The intent of this thesis is to design a hardware system so
that at some future date an operating system could be developed to
control its hardware facilities. These facilities accommodate
virtual-memory, protected memory, serial communications, interrupt
control and multi-processor abilities interfaced to the VMEbus. A
hard disk controlled by a direct memory access (DMA) controller
would be needed to implement the paging function required to
support virtual-memory. The operating system would use the memory
management unit (MMU) to implement user/supervisor memory
allocations (protected memory) and virtual-memory. Considerations
for a future operating system will be discussed throughout the
following sections.

The fully integrated system is composed of the master circuit
board subsystem and the system controller subsystem (Fig. 3.1).
Each subsystem is decomposed into functional units. The functional
units for the master circuit board subsystem are shown in Figure
E.1 and the functional units for the system controller subsystem
are shown in Figure E.2. Each of the functional units for the
subsystems is discussed in the following sections.

1. Memory Map

The memory map (Table II) of the master circuit board’s
physical address space contains the memory-mapped peripheral
devices and the physical memory. This mapping is an enhanced

version of the minimal system’s physical memory map (Table I).
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TABLE II: SYSTEM MEMORY MAP

PHYSICAL
ADDRESS
$000000

64K BYTES OF EPROM
SOOFFFF
$010000

16K BYTES OF SRAM
S013FFF
5014000

OFF~BOARD RESOURCE
STF4FFF
$7F5000

MC68451 MMU
$7FSFFF
$TF6000

SCB68155 INTERRUPT HANDLER
STF6FFF
$TFT7000

MC68681 DUART
STFIFFF
$TF8000

OFF~-BOARD RESOURCE
STFFFFF
$800000

ONE MEGABRYTE OF DRAM
$8FFFFF
$3800000

OFF~BOARD RESOURCE
SFFFFFF

The memory map allocates 64K bytes of ROM to include the
interrupt vector table, monitor/debugger program and operating
system. The interrupt vector table and monitor/debugger program
perform the same roles as described in the minimal system.
However, an operating system would have to be incorporated to
handle the enormous code requirements to manage user/supervisor
memory allocations (protected memory), page faults (for virtual-
memory) and an operating system kernel. The intent is for the core

of the operating system to reside in ROM, since a mass storage
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device is not incorporated in this subsystem design. A design of
a multi-disk control module for a VMEbus-based system was presented
in an earlier thesis [Ref. 12].

The 16k bytes of SRAM retains upward compatibility with the
minimal system. The SRAM will be used until the DRAM can be
incorporated into the master circuit board subsystem. However, if
an operating system requires more that the 64K byte size of ROM,
which is a likely possibility, any range spanning the physical
addresses $010000 through $7FAFFF could be allocated for more ROM
or RAM. This would require changing the address decoding logic and
adding ~OM or RAM chips to the master circuit board subsystem
design.

The MC68451 MMU [Ref. 13] is memory-mapped because its
internal registers must be programmed for the desired virtual-
memory configuratior and address translation. By using the
MC68010’s function codes (see Appendix A) along with the desired
address translation scheme, an operating system can separate the
supervisor’s address space from the user’s address space, thus
implementing a memory protection scheme.

The SCB68155 interrupt handler hardware [Ref. 14:pp. 2-369
- 2-385] is memory-mapped so that it can be initialized for the
desired mode of operation. The interrupt handler can accommodate
local interrupts from the DUART and the MMU as well as interrupts
from global bus masters.

The MC68681 DUART [Ref. 15] provides the interface to two

RS-232 serial links. One link is used for communications with the
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terminal, while the other link is used for communications with an
IBM XT/AT computer. The DUART is configured to provide the desired
serial communications characteristics such as baud rate, parity and
stop bites.

One megabyte of DRAM is provided for the master circuit
board subsystem. The operating system would manage this resource
by assigning virtual pages to physical memory. It is intended that
a portion of the DRAM’s physical address range map to the same
virtual address range. This will permit global memory access to
pass semaphores and messages between the master circuit board and
other subsystems, as discussed in Chapter I.

It is important t~ note that if an address falls into the
ranges of $014000 through $7F4FFF, $7F8000 through S$7FFFFF or
$900000 through SFFFFFF, the CPU is accessing an off-board device.

2. Master Circuit Board
a. Microprocessor

The MC68010 CPU (Fig. E.3) is the processing element of
the master circuit board subsystem. The signals of the CPU can be
organized into functional groups (see Appendix A) which describe
the role of the signals within the subsystem.

The CPU has two bi-directional open collector pins,
HALT* and RESET*, which require pull-up resistors to ensure that
the signals are not asserted until the appropriate events occur.

The only bus master on the subsystem is the MC68010.

Hence, the bus request (BR*) and the bus grant acknowledge (BGACK*)
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signals require a pull-up resistor to ensure that the CPU does not
perform bus arbitration.

No Motorola M6800 peripherals are used in the master
circuit board design. Hence, the valid peripheral address (VPA¥X)
signal is tied to a logical one.

The circuitry to generate the DTACK* and BERR* signals
(discussed later) are open collector signals. Hence, pull-up
resistors are used to ensure that these signals are not
inappropriately asserted.

b. Halt and Reset Generation

The HALT* and RESET* generation <circuitry (Fig.
E.4) provides manual and automatic power-on subsystem reset to the
CPU and peripheral devices. The NE555 timer provides an automatic
power-on reset to the subsystem. The NE555 timer is configured as
a one-shot to generate the power-on reset signal. This automatic
reset occurs within the first few tenths of a second after the
subsystem is powered on. An external system reset can also reset
the subsystem. This system reset is generated from the system
controller subsystem via the VMEbus. A debounced switch is used to
cause a manual reset of the subsystem.

A reset causes the CPU to read into the SP register and
PC register the longword (32-bits) contents of physical addresses
$000000 and $000004, respectively. Recall that ROM begins at
physical address $000000. Consequently, the two longwords beginning
at physical address $000000 are retrieved from non-volatile memory.

The initial PC vector at physical address $000004 contains the
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value $002000, so when this value is read into the PC, execution of
the monitor/debugger program is started.
c. Clock Generation
The clock generation circuitry (Fig. E.5) provides
clocking signals to the CPU and to the peripheral devices. A
74LS161 binary counter is used to divide the 16 MHz signal from the
crystal oscillator into rates that accommodate the CPU, the MMU,
the dual-port DRAM controller and the interrupt handler hardware.
A 4 MHz signal is sent to additional circuitry to help generate the
DTACK* and BERR* signals.
d. Local Bus Address Decoding
Once a virtual address is mapped to a physical address,
the local bus address decode circuitry (Fig. E.6) is used to
generate chip select signals for RAM, ROM or a peripheral dgvice
based upon the system memory map (Table II). Two Altera EP310
EPLDs [Ref. 16:pp. 2-57 - 2-62] were used in the design to be
programmed via Abel software [Ref. 11]. As mentioned earlier, Abel
is software developed by Data I/0 Corporation that permits a high-
level language description of the logic function to be programmed
on a EPLD, programmable array logic (PAL) or similar logic device.
e. Memory Management Unit
The MMU circuitry (Figs. E.7 and E.8) provides the
subsystem with virtual-memory support and memory protection. The
address translation from a virtual-address-to-physical-address is
done by this device. Once the MC68451 MMU has been configured by

the operating system, the address translation is performed
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internally within the MMU and is thus hidden from the subsystem
unless a page fault occurs. The internal details of the MMU are
given in its reference manual [Ref. 13].

A page fault (FAULT*) signal is generated if the MMU
detects a write violation or if address translation cannot be
performed successfully. The write violation occurs if an attempt
is made to write to a write-protected portion of physical memory.
If address translation cannot be performed, this denotes to the
operating system that a new memory page may need to be brought into
memory from a hard disk or that there is a system error. The
operating system configures the MMU to write-protect memory
segments and to Implement virtual-memory-mapping by the MMU.

The circuitry to inhibit virtual-address-to-physical-
address translation during an interrupt cycle is illustrated in
Figure E.7. The mapped address strobe (MAS*) and ALL input signals
to the MMU are generated during an interrupt acknowledge cycle.

The physical data strobe generation circuitry (Fig.
E.8) is used to generate the physical upper data strobe (PUDS*) and
the physical lower data strobe (PLDS*) signals. The PUDS* and
PLDS* signals are generated during normal virtual-address-to-
physical-address translation. Normal address translation is the
mapping of a virtual address to a physical address without a page
fault occurring. The physical data strobes will not be generated
if there is a write cycle for a write-protected segment. This is
accomplished by the write inhibit (WIN*) signal generated by the

MMU.
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The physical address strobe circuitry (Fig. E.8)
generates a physical address strobe (PAS*) signal to denote that
the address translation has taken place and the physical address is
valid and stable.

f. Dual-port DRAM Controller

The dual-port DRAM controller circuitry (Figs. E.9,
E.10 and E.1ll) provides two paths into RAM [Ref. 17]. The local
bus master (the CPU) can be ported to the RAM or a global bus
master can be ported to the RAM via the VMEbus. Two paths into RAM
are especially useful because processor subsystems can pass
information-carrying semaphores. Also, The 74F764 dual-port DRAM
controller provides DRAM refresh.

The 3-state capability of the 74LS244s (Fig. E.9)
octal-buffers and line drivers with 3-state outputs are used to
isolate one port access to the dual-port DRAM controller from the
other port. The port is selected by the appropriate clock edge and
control signal to the request input (REQl* or REQ2*) of the 74F764
dual-port DRAM controller.

The control signal for REQl* of the 74F764 (CS764REQ1¥*)
is generated by the 1local bus address decoder and the control
signal for REQ2* of the 74F764 (CS764REQ2*) is generated by the
VMEbus address decoder. If CS764REQl* is active on a rising clock
edge and SEL2* is not asserted, the local master is granted access
to the 74F764. The dual-port DRAM controller then asserts SEL1* to

enable the 741L5244s and 74L5245s on the local bus side.
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If CS764REQ2* 1is active on a falling clock edge and
SEL1* is not asserted, the global bus master is granted access into
the 74F764. The dual-port DRAM controller then asserts SEL2* to
enable the 74LS244s and 74LS245s for the global bus side. 1In each
case, the select line is released after the request signal is no
longer asserted.

If both request lines are asserted and neither select
line is asserted, on the next (rising or falling) clock edge, the
select signal will be generated for the appropriate port access.
The request that is locked out cannot gain access to the dual-port
DRAM controller until the other port has completed its task and is
no longer asserting its request signal.

The 74LS245s octal-bus transceivers with 3-state
outputs, illustrated in Figure E.10, are used to buffer the data
signals. Data can be sent between the CPU and the VMEbus, between
the CPU and the DRAM or between the DRAM and the VMEbus. The data
enable signal (DATAEN*) enables data to flow between the CPU and
the VMEbus. The select port one (SEL1*) signal enables data to
flow between the CPU and the DRAM, while the SEL2* signal enables
data to flow between the DRAM and the VMEbus. The data flow
direction to the 74LS245s is controlled by the read/write (R/W*)
signal during local DRAM accesses, while the global R/W* signal
(GR/W*) controls the direction for global DRAM accesses. The data
direction enable (DDEN) signal controls the data direction flow

between the CPU and the VMEbus.
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The 74F764 can only effectively accommodate 18 address
lines. Consequently, additional logic illustrated in Figure E.1l1l
must be incorporated to handle address bit Al9, which is required
to give access to the desired one megabyte of RAM.

When the row address strobe (RAS*) signal becomes
inactive, the data transfer acknowledge output from the 74F764
(DTACK764) is asserted. The DTACK signal of the 74F764 signals
that data has been transferred to or from memory.

g. Dynamic Random Access Memory

The dynamic random access memory circuitry (Figs.
E.12, E.13, E.14 and E.15) provides one megabyte of DRAM for the
master circuit board subsystem. The DRAM is divided into two 512k
byte blocks. The odd bytes are stored in one 512k byte block
(Figs. E.12 and E.13), while the even bytes are stored in the other
512k byte block (Figs. E.14 and E.15).

The DRAM receives refresh cycles from the dual-port
DRAM controller. Although the 74F764 dual-port DRAM controller
seizes control of the DRAM during refresh cycles, a bus arbitration
process is not needed. An 8 MHz clock pulse (RCP) is divided by 64
to produce a refresh request internal to the 74F764. If no request
signal (REQl1* or REQ2*) is asserted on the 74F764, a nine-bit
counter internal to the 74F764 is incremented. The counter value
which represents the row in memory to be refreshed is then placed
on output lines MAO through MA8 of the 74F764. The RAS* signal is

then asserted for four clock cycles to refresh a row in memory.
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Finally, the RAS* signal is released and the refresh cycle is
complete.
h. EPROM and SRAM
The EPROM and SRAM circuitry (Fig. E.16) provide 64k
bytes of ROM and 16k bytes of SRAM. The EPROM contains the
resident exception vector table and the monitor/debugger program.
The SRAM 1is upward compatible from the minimum system. If
additional memory is required by a resident operating system, a
modification to the local bus address decoding logic would permit
the size of ROM or RAM to be increased.
i. Dual Serial Port
The MC68681 dual wuniversal asynchronous receiver/
transmitter serial port circuitry (Fig. E.17) is used to provide
serial communications with the terminal and the IBM XT/AT computer.
Port A is dedicated to the terminal and Port B is dedicated to the
IBM XT/AT ccmputer. The 3.6864 MHz crystal is used to generate the
baud rates for data transmission for both ports. The terminal
provides an interface to the system for the user. The IBM XT/AT is
used to down-load files into the master circuit board subsystem’s
memory.
j. Interrupt Handler
The interrupt handler circuitry (Fig. E.18) provides
the necessary logic to accomnodate interrupts from devices residing
on the master circuit board subsystem and global devices residing

on other subsystems. The SCB68155 interrupt handler can
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accommodate six local interrupts, seven global interrupts and a
non-maskable interrupt (NMI).

Local interrupts (LRQ1l* through LRQ6%*) have a higher
precedence than the global interrupts (IRQ1* through IRQ7*). The
local interrupt signal LRQ6* has the highest priority, while local
interrupt signal LRQl* has the lowest priority. The global
interrupt signal IRQ7* has the highest priority, while global
interrupt signal IRQl* has the lowest priority. The NMI signal has
priority over local and global interrupts and it is provided for a
catastrophic occurrence such as an alternating current (AC) power
failure.

Local interrupts are generated by the DUART and the
MMU. The DUART is programmed to provide an interrupt request when
a port buffer full condition is met. The buffer full condition of
the MC68681 DUART occurs whenever a character is received from the
terminal keyboard or from the IBM XT/AT. The local interrupt
generated by the MC68451 MMU occurs when the interrupt bit of the
page status register is set during normal address translation.

When a local or global interrupt occurs, the interrupt
handler hardware generates an interrupt priority level output on
lines 1IPLO* through IPL2* to the CPU. The CPU responds by
acknowledging the interrupt with the interrupt acknowledge signal
(IACK*) and places the interrupt level on address lines Al through
A3. The interrupt handler hardware reads the interrupt level on
address lines Al through A3 to determine which level is being

acknowledged. If the interrupt was from a local device, the
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interrupting device provides the vector number on the local data
bus. If the interrupt was from another subsystem on the VMEbus,
the interrupt handler hardware generates a bus interrupt
acknowledge (BIACK*) signal to the VMEbus controller and the
VMEbus. The VMEbus controller obtains control of the data transfer
bus (DTB) so that an interrupt vector can be obtained from the
interrupting subsystem. The BIACK* signal is only generated if the
bus interrupt level is not masked (within the interrupt handler)
and a local interrupt is not pending.

Once the 1local CPU has acknowledged the (local or
global) interrupt request and has obtained an interrupt vector, the
local CPU saves the state of the machine and transfers control to
the appropriate interrupt handling routine. This prepares the CPU
to perform an interrupt handling routine. After completion of the
interrupt handling routine, the stored state of fthe machine 1is
restored and the CPU resumes processing where it left off at the
interrupt. [Ref. 7:pp. 4-3 - 4-16; Ref. 18:pp. 5-1 - 5-15]

k. Data Transfer Acknowledge and Bus Error Generation

The data transfer acknowledge and bus error generation
circuitry (Fig. E.19) provides control signals to the CPU. This
circuitry physically resides within a Altera EP310 EPLD. The
DTACK* signal denotes that a data transfer has been completed by
the slave device addressed. The MC68681 DUART, MC68451 MMU,
SCB68172 VMEbus controller, SCB68155 interrupt handler and 74F764

dual-port DRAM controller peripheral devices possess the necessary
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logic to generate their own DTACK* signal to acknowledge receipt or
availability of data.

The master circuit board’s RAM and ROM chips cannot
generate their own DTACK* signals so external circuitry must do it
for them. The DTACK* generation circuitry for the SRAM and ROM
must allow adequate time for the data transfer. All these DTACK*
signals are ORed together to produce the MC68010 DTACK* input.

If the CPU on the master circuit board makes an off-
board access using the off-board (OFFBOARD*) signal to the VMEbus
controller, the DTACK* signal (DTACK172*) is generated from the
VMEbus controller. The off-board device provides a global DTACK*
signal (GDTACK*) to the VMEbus controller (Fig. E.20) via the
VMEbus DTACK* line. In turn, the VMEbus controller would provide
the DTACK172* signal for the DTACK* circuitry. This arrangement
permits long access times on the VMEbus.

If the master circuit board’s DRAM is being accessed as
a global asset, the GDTACK* signal is generated by the SEL2* and
DTACK764 signals as illustrated in Figure E.1l1.

The BERR* signal 1is generated under one of three
conditions. First, the BERR* signal is generated when the maximum
allowable SRAM and ROM data transfer time has been reached and a
DTACK* signal has not been received by the CPU. Secondly, a global
bus error (BERR172*) signal can be received from a VMEbus watchdog
timer if the master circuit board subsystem has control of the
VMEbus. Finally, if a page fault signal (FAULT*) is generated by

the MMU, this also causes a bus error condition.
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The bus error condition causes exception processing to
occur. The current state of the machine 1is saved. Information
from the saved state of the machine can be used to determine the
cause of the bus error. This is handled by the bus error exception
routine as part of an operating system.

If the first port of the dual-port DRAM controller is
not active and a refresh cycle is not taking place, a global bus
master can have access to the DRAM. The master circuit board’s CPU
is unaware of the access to the DRAM through the second port.
Consequently, the burden is placed upon a global master or a VMEbus
watchdog timer to provide a global BERR* signal (GBERR*) on the
VMEbus BERR* line, when appropriate, to the VMEbus controller. The
GBERR* signal is sent to the BERR* circuitry (Fig. E.19) via the
BERR172* signal.

1. VMEbus Controller

The VMEbus controller circuitry (Fig. E.20) provides
the necessary logic for the master circuit board subsystem to gain
access to the VMEbus. The SCB68172 VMEbus controller provides
contrcl signals (VMEEN*, DATAEN* and DDEN) to the master circuit
board subsystem’s drivers and transceivers. The purpose of the
VMEbus enable (VMEEN*) signal is to enable the bus drivers only
when there is an off-board (OFFBOARD*) access. In addition, the
data flow (DATAEN*) and its direction (DDEN) are controlled.
Parallel jacks are provided which permit jumper selection of the

master circuit board subsystem’s priority on the VMEbus.
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m. VMEbus Address Decoding

The VMEbus address decode circuitry (Fig. E.21) permits
access of a global bus master to the second port of the dual-port
DRAM controller and ultimately into DRAM. Any subsystem, which has
gained control of the VMEbus, has the ability to access the
designated (by the operating system) area of DRAM for semaphore
passing. The VMEbus address decoder provides the chip select
signal CS764REQ2* to the dual-port DRAM controller (Fig. E.9). If
the CS764REQ2* is asserted when clock edge falls and SEL1* signal
of the 74F764 is not asserted, the isclation drivers are enabled to
permit the flow of data and addresses from the global resource to
the DRAM.

n. VMEbus Drivers

The circuitry for the master circuit board’s VMEbus
drivers (Figs. E.22, E.23 and E.24) provides control of signals
from the local bus to the VMEbus and from the VMEbus to the local
bus. The VMEbus controller controls the direction of the signal
flow as requested by the CPU. Whenever the local bus master, the
CPU, 1is not in control of the VMEbus, all signals from the local
bus are isolated at the drivers by the VMEbus controller. Thus, in
this case, no signals are gated onto the VMEbus from the local bus.
However, another subsystem, if in control of the VMEbus, has direct
access to the DRAM through the dual-port DRAM controller. The
global addresses on the VMEbus fall into the range of the one
megabyte of user DRAM in the master circuit board subsystem’s

memory map (Table II).
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3. System Controller Circuit Board
a. Bus Arbiter
The VMEbus arbitration circuitry (Fig. E.25) provides
the logic to arbitrate prioritized bus requests in parallel. Each
bus request is then daisy chained down to the requesting device.
Each subsystem capable of VMEbus access must have the ability to
provide a bus request at one of four priority levels. The highest
priority signal used is DBG7*, while the lowest priority level
signal used is DBG4*. The process of resolving the VMEbus requests
was described in Chapter 1II. Since the MC68452 bus arbitration
module (BAM) [Ref. 8] 1is an asynchronous device, the bus grant
signals (DBGx*) are not guaranteed to be spike-free. Consequently,
a 50 nanosecond delay circuit is used to disable the DBGx* signals
during the parallel arbitration process.
b. System Reset
The system reset circuitry (Fig. E.26) provides a
system-wide master reset. This signal is sent on the VMEbus to all
circuit boards and it is used to reset the entire system much like
the local reset discussed earlier in this chapter.
c. VMEbus Drivers
The circuitry for the system controller drivers (Fig.
E.27) provides the drive capability for signals to/from the VMEbus.
Since circuitry was not designed to detect an AC power failure, the
ACFAIL* signal is never asserted. This signal is input to the non-
maskable interrupt of the interrupt handler (Fig. E.17). The bus

clear (BCLR*) signal informs the current bus master that there is
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a higher pending bus request. Burden is placed upon the current
bus master to either relinquish control of the bus or to continue
control until its task is completed. For the sake of simplicity,
the master circuit board subsystem was designed to relinquish
control upon the completion of its task. Finally, an IACK* daisy

chain driver is provided for VMEbus interrupts.
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V. RESULTS

Once the minimal system and fully integrated system hardware
was designed, the schematic drawings drafted and the pin-out list
implemented, software support was required to implement the minimal
system. The monitor/debugger program required a thorough check of
all its software features. These software features include the
capability to set and remove a breakpoint, to display and modify
memory, to display and change registers, to start program execution
and to down-load software from a development system.

It was discovered while debugging the down-load portion of the
monitor/debugger program that the 2500AD 68010 cross assembler’s
linking process incorrectly resolved external references. The
lirking process generates a file in the Motorola S-record format.
The problem was isolated only after comparing the Motorola S-record
to Motorola’s instruction format. It was identified that the
2500AD cross assembler was improperly resolving external
references. A corrected version of the 2500AD cross assembler was
obtained from the vendor that resolved this problem. With the
monitor/debugger software developed, the minimal system design was
complete.,

The monitor/debugger and vector table were programmed in the
erasable programmable read-only memory (EPROM) with the Data I/0

System 29 Universal Programmer. The Data I/0 System 29 segregated
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the even bytes and odd bytes into separate EPROMs as required by
the Motorola MC68010 central processor unit (CPU).

Erasable programmable logic devices (EPLDs) were used to reduce
the chip count in the minimal system design. The minimal system
used an EPLD to perform the interrupt request (IRQ681*) and the
interrupt acknowledge (IACK681*) logic. Also, EPLDs were used to
implement the circuit logic required for the generation of the data
transfer acknowledge (DTACK) and the bus error (BERR) signals and
for address decoding. In order to program the EPLDs, Abel software
was used to compile the source code representation of the logic to
be implemented with the EPLD. Once all of the source code for the
EPLDs had been written, compiled and software tested, the EPLDs
were programmed.

On the Data I/0 System 29, once the EPLD is programmed, the
test vectors are again tested against the programmed EPLD. During
this test run, the System 29 failed for every EPLD that was
programmed, even though they passed the software tests. On the
advice of an applications engineer at Data I/0 Corporation, the
test vectors were removed from the source code. This code was
compiled,';hen the EPLDs were programmed. The EPLDs were bread-
boarded, while determining with reasonable certainty that the
devices were actually implementing the desired logic.

The ultimate goal in this thesis was to implement the master
circuit board subsystem design. One of the steps to achieve this
goal requires the memory management unit (MMU) to translate a

virtual address to a physical address. To avoid significant wiring

60




modifications to the minimal system to build up to the master
subsystem, the MMU was wire-wrapped into the minimal system Aesign.
However, the MMU was not programmed at the minimal system stage.
The MMU translates a virtual address to the same physical address
when the MMU is not programmed after being reset. The MMU was
configured to accommodate an automatic, manual and programmed (CPU

reset instruction) reset.
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VI. SUMMARY AND CONCLUSIONS

A. SUMMARY
The goal of this thesis was two-fold: first, to explore
hardware ramifications of designing a microprocessor system for a
multi-processor environment; and secondly, to implement the
minimal system design.
1. Design Concepts
In exploring hardware ramifications, the scope was limited
to features of the VMEbus structure, in memory-management and
interrupt control. The memory-management features included memory
protection, dual-ported memory and virtual-memory.
a. VMEbus Structure
The VMEbus permits an exchange of data and control
beyond the boundaries of a single circuit board. Other subsystems
or circuit boards which may include processing elements, memory
and/or input/output (I/0) devices can be integrated to the VMEbus.
A strict adherence to data transfer protocols over the VMEbus
ensures the reliability and integrity of the system. The ability
to integrate various subsystems along the VMEbus supports a multi-
processor environment.
b. Memory-Management
The Motorola MC68010 central processor unit (CPU)
generates function codes which can be used by the memory management

unit (MMU) to partition memory into supervisor and user portions.
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An operating system would manage memory partitioning. Normally,
systems are designed so that the supervisor memory portion contains
the memory-mapped I/0O devices and the read-only memory (ROM) and
some random access memory (RAM). The ROM is mapped to the
supervisor portion of memory since it provides the exception vector
table and start-up program.

The function codes reflect the CPU’s two modes of
operation, the supervisor and user. The supervisor mode is a
privileged mode which permits access to all instructions and the
full range of memory (supervisor and user memory). The user mode
permits access to only user instructions and the user memory.
Typically, in the user mode, permission must be granted through the
operating system to use system resources. The separation of
supervisor memory from user memory prevents the user from tampering
with the system assets or gaining supervisor privileges.

Dual-ported memory permits two separate sources to
access the same memory block and provides the refresh signals for
the dynamic random access memory (DRAM). Dual-ported memory
permits RAM to be used as a shared asset. It is especially useful
when a portion of the physical RAM is dedicated to passing
parameters between microprocessor subsystems. Dedicating a portion
of RAM for parameters is analogous to a mailbox delivery system.
The mail courier (subsystem 1) delivers mail (parameters) to the
mailbox (RAM). The addressee (subsystem 2) picks up the mail
(parameters) and responds as required. If appropriate, the

occupant (subsystem 2) places mail (parameters) in the mailbox
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(RAM) to be delivered (to subsystem 1). These parameters can be
used in managing a multi-processor operating system.

A MC68010-based system typically has memory-mapped I/O
devices, RAM and ROM. DRAM 1is added the master circuit board
subsystem to supplement the minimal system’s static random access
memory (SRAM). The MC68010 CPU has a virtual address range of 16
megabytes. However, the physical RAM’s size is usually
considerably less than the size of the virtual address space.
Virtual-memory is used to extend the range of programming beyond
the range of physical RAM. An MMU is used to map virtual addresses
into RAM physical addresses. Also, the MMU detects an attempt by
the CPU to access a virtual-memory address which is not currently
present in physical memory. When such an attempt is detected, the
MMU generates a page fault. This page fault causes the page fault
exception routine to be invoked. The exception routine reads a
page of information from secondary storage into RAM. The MMU maps
the virtual addresses associated with the page into addresses in
the physical RAM. After completion of the exception routine,
program execution resumes with the completion of the instruction
that caused the page fault.

¢c. Interrupt Control

Using interrupts results in more effective use of the
microprocessor because the microprocessor is not kept waiting for
a device to respond. The devices requesting interrupts in this
thesis are programmed to provide an interrupt vector number during

an interrupt acknowledge cycle for local interrupts. The interrupt
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vector number causes the address of the exception routine to be
obtained from the exception vector table by the CPU so that it can
be executed.
2. Design Implementation
a. Hardware Configurations

The recommended wiring configurations that accompanied
the product specifications for the MMU, VMEbus controller, dual
universal asynchronous receiver/transmitter (DUART), dual-port DRAM
controller, interrupt handler hardware and bus arbitration module
(BAM) greatly assisted in the designs of the minimal system, system
controller subsystem and master circuit board subsystem. However,
in order to integrate these components into a system, care was
taken to ensure that the control signals were interfaced properly.
Since no computer-aided design (CAD) tools existed at the Naval
Postgraduate School (NPS) to fully simulate even the minimal system
design, prototyping the minimal system was necessary. The minimal
system has a foundation of core resources. The intent was to prove
the system design by building up a master circuit board subsystem
from the minimal system.

The system controller subsystem provides a bus arbiter,
interrupt acknowledge (IACK*) daisy chain driver and system-wide
reset. The bus arbiter determines bus ownership between subsystems
that make bus requests and it grants bus ownership to the subsystem
with the highest priority. An IACK* daisy chain driver sends the

IACK* signal on to the bus during an interrupt acknowledge cycle.
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The system reset is used to reset all devices on all subsystems
after a system failure.

The master circuit board subsystem accommodates the
VMEbus structure, virtual-memory-mapping facilities, a protected
memory scheme, dual-ported memory and interrupt handling hardware.
The master circuit board subsystem design is an extension of the
minimal system and should not be implemented until the minimal
system is operational. In the master circuit board subsystem, the
VMEbus controller provides the necessary logic to meet the VMEbus
specification for setting up the baseline bus structure. Drivers
and transceivers are incorporated to meet the specified signal
drive capability and isolation requirements.

b. Erasable Programmable Logic Devices

The erasable programmable logic device (EPLD) used in
the minimal system’s address decoding must be modified to include
the additional memory-mapped devices cf the master circuit board
subsystem. The EPLD used for interrupt handling in the minimal
system is replace by the interrupt handler hardware in the master
circuit board subsystem design.

The master circuit board subsystem design 1is an
upgraded version of the minimal system. A pin-out list for all
wiring connections was developed in order to reduce wire-wrap
errors, but it is not included as part of this thesis. The small
scale integrated circuit (SSI) logic shown for the generation of
the data transfer acknowledge (DTACK), bus error (BERR), physical

upper data strobe (PUDS*), physical lower data strobe (PLDS*) and
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physical address strobe (PAS*) signals was actually implemented

with EPLDs to reduce the chip count.

B. CONCLUSIONS

Meeting all the goals set in this thesis made this thesis an
ambitious undertaking. The major integrated circuit (IC) chips
included the CPU, DUART, interrupt handler hardware, dual-port DRAM
contrcller, MMU, VMEbus controller and BAM. These IC chips
required an extensive study of product specification and
application notes to understand the wiring configurations and
programming of the devices. Study of the specification notes
invoked support ideas in the design that required further
investigation. These support ideas included DRAM memory refresh
accommodations, driver characteristics, noise reduction and
virtual-memory. Once each device was reasonably understood, the
problem of integrating the devices into a single system remained.
Care was exercised to ensure that control signals were properly
integrated to the devices. Consequently, a major portion of this
thesis was spent in the research and design process without the
assistance of CAD tools.

The design and implementation work of this thesis spanned
almost two years. A major problem encountered was the inability to
simulate the system designs. Hence, the system’s validity could
only be verified by actual design implementation.

The design phase took a considerable length of time because the
inter-relationships between the devices to support a multi-
processor environment, dual-port memory, virtual-memory, memory
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protection, dual serial ports and interrupt control features were
not trivial. Some of these features should have been eliminated so
that a simpler design could have been implemented. However, using
the approach of building a complex subsystem from a minimal system
is an important technique. For a growing number of new application
IC chips, facilities to simulate designs using these chips do not
yet exist. Thus, there is a strong need for advanced design tools
and engineering practices to support complex designs.

An important restriction of the master circuit board subsystem
design is the lack of an operating system. The capability provided
in this thesis could not be fully utilized without an operating
system and a mass storage device, such as a hard disk. Managing
the virtual-memory and protected memory requirements would require
a tremendous amount of code which is beyond the scope of this
thesis. However, while designing the master circuit board
subsystem, foresight was exercised to consider the requirements of
an operating system. This confirms the need for a dialogue
between system designers and operating system designers to

communicate the system requirements.
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APPENDIX A: MC68010 16-BIT MICROPROCESSOR

Since the entire hardware system design revolves about the
MC68010 microprocessor, a description of the microprocessor, its

external signals and its programming is appropriate.

A. MC68010 DESCRIPTION

The MC68010 has seventeen 32-bit general purpose registers, a
16 megabyte address space, virtual-memory/machine support, 57
instructions with 14 addressing modes using five main data types
and memory-mapped input/output (I/0) [Ref. 7:p. 1-1]. Motorola
provides a complete signal description and timing analysis of the

MC68010 microprocessor [Ref. 18].

B. MC68010 SIGNALS
The MC68010 central processing unit (CPU) comes in a 64-pin
package. As shown in Figure A.1, the signals are organized into
groups and the direction of the signal flow is denoted by the
arrows. To avoid any confusion over logic assertion levels, the
asterisk ( * ) at the end of a signal name is used to denote an
active low assertion level.
1. Address Bus
The address bus consists of 23 address lines giving an

eight megaword address range for the CPU.
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—Vvce (2) —> F=> ADDRESS BUS Al-AZ23
MISCELLANEQOUS — GND(2) —> <=> DATA BUS DO0-D15
—CLK —>
—> AS*
—FC0 <—_7 —> R/W* ASYNCHRONQUS
PROCESSOR — FC1 < —> UDS* BUS
STATUS —FC2 < ——> LDS* CONTROL
<— DTACK*
Me800 —E <—MC68010
PERIPHERAL — VMA* <—] <— BR* BUS
CONTROL “—VPA* > —> BG* —}— ARBITRATION
<— BGACK* CONTROL
BERR* —>
SYSTEM —{:RESET* <> <— IPLO*
CONTROL HALT* <—> <— IPL1* :}— INTERRUPT
<—- IPL2* CONTROL

Figure A.1l: MC68010 Signal Groups

2. Data Bus
The data bus is a 16-bit bi-directional bus used for
transferring byte or word length data.
3. Asynchronous Bus Control
The asynchronous bus control group provides information
about the data that is being transferred. The address strobe (AS¥*)
signal signifies that valid address signals are being gated from
the CPU. The read/write (R/W*) 1line denotes that the CPU is
reading from a device (active high) or that the CPU is writing to
the device (active low). The upper data strobe (UDS*) indicates
that the data being transferred is on an even byte boundary. The
lower data strobe (LDS*) indicates that the data being transferred
is on an odd byte boundary. When UDS* and LDS* are both asserted,

a word (16-bits) of data is being transferred. The UDS* and LDS*
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signals together determine address bit A0, thus giving an address
range of 16 megabytes for the CPU. The UDS*, LDS* and R/W* signals
control the flow of the data on the data bus as illustrated in
Table TII [Ref. 18:p. 4-2]. Finally, the data transfer acknowledge
(DTACK*) signal informs the CPU that the current data transfer has
been completed by the peripheral device or memory location

addressed.

TABLE III: DATA STROBE CONTROL OF THE DATA BUS

UDS* | LDS* |R/W* D8 - D15 DO - D7

1 1 lor0|NO VALID DATA BITS NO VALID DATA BITS

0 0 1 VALID DATA BITS VALID DATA BITS

1 0 1 NO VALID DATA BITS VALID DATA BITS

0 1 1 VALID DATA BITS NO VALID DATA BITS

0 0 0 VALID DATA BITS VALID DATA BITS

1 0 0 #VALID DATA BITS 0-7|VALID DATA BITS

0 1 0 VALID DATA BITS #VALID DATA BITS 8-15

# These conditions are a result of current implementatiorn and
may not appear on future devices.

4. Bus Arbitration Control
As a group, the bus arbitration control signals provide a
mechanism for the CPU to give up control of the bus. However,
these signals do not determine (directly) which alternate bus
master gets control. The buc request (BR*) signal is a signal
generated by a device or devices requesting access to the bus. The
bus grant (BG*) is a signal from the CPU indicating that it will

release the bus at the end of the current bus cycle. The bus
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grant acknowledge (BGACK*) is a signal asserted by an alternate bus
master while it has control of the bus.
5. Interrupt Control

The interrupt priority levels (IPLO* through IPL2*) are
signals which represent the encoded priority level for the highest
priority device desiring interrupt service. The signal IPLO* is
the 1least significant bit and the signal IPL2* 1is the most
significant bit of the group. A level zero interrupt (all signals
are asserted high) indicates there is no interrupt request pending.
A level seven interrupt (all IPLx* signals are asserted low) has
the highest priority and is non-maskable. This implies that level
seven is not an ordinary interrupt level for requesting routine
interrupt service. Rather, a 1level seven interrupt should be
reserved for catastrophic events such as alternating current (AC)
power failure where the non-maskable property is essential.

6. System Control

The system control group is used to reset the CPU and to
indicate to the CPU that a bus error has occurred. It is also used
to reset peripheral devices and to generate a bus error exception.
The halt signal (HALT*), active low, is a bi-directional signal.
As an input, it is used to stop the CPU at the completion of the
current bus cycle. As an output, HALT* is asserted only when a
double bus error or address error exception has caused the MC68010
to enter a halt state.

The reset signal (RESET*), active low, 1s also a bi-

directional signal. It can be used as an input to reset the




internal microcircuitry within the CPU. When a reset instruction
is executed by the CPU, it can be used to reset system devices.

Typically, a maximum time is allotted for data transfer.
If the data transfer is not completed within the allotted time, bus
error (BERR*) is asserted by a time out circuit called a watchdog
timer. Often, the BERR* signal is used to inform the CPU that the
current address on the address bus is invalid because no physical
memory or peripheral device is mapped at that address. The BERR*
signal can also be used to flag the condition that the CPU is
making an attempt to write to read-only memory (ROM). In a
virtual-memory system, 3EZRR* is asserted by the memory management
unit (MMU) when a page fault occurs.

7. M6800 Peripheral Control

The M6800 peripheral control group is a group of signals
which are used to interface the MC68010’s 16-bit asynchronous data
bus to synchronous peripheral devices in the Motorola M6800 eight-
bit family.

The enable (E) signal which acts as the 6800 phase two
clock is used to synchronize data transfer between the MC68010 CPU
and M6800 peripheral device. The E signal’s period is ten clock
periods of the MC68010’s clock input. The valid peripheral address
(VPA*) signal denotes to the CPU that the device selected is a
M6800 peripheral device. The VPA* signal indicates to the CPU that
it should initiate a data transfer synchronized with the E signal.

The valid memory address (VMA*) signal from the CPU indicates to a
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M6800 device that there is a valid address on the address bus and
that the MC68010 is synchronized with the E signal.
8. Processor Status

The MC68010 has three function code lines (FCO through FC2)
which delineate the current processor state (user or superviscr)
and the address space (program or data) being accessed as defined
by Table IV [Ref. 18:p. 5-3]). The address strobe (AS*) signal from
the CPU indicates that a valid address and function code are

available from the CPU.

TAELE IV: STATE AND ADDRESS SPACE

FUNCTION CODE OUTPUT ADDRESS SPACE

FC2 FC1 FCO
0 0 0 UNDEFINED, RESERVED FOR FUTURE USE
0 0 1 USER DATA SPACE
0 1 0 USER PROGRAM SPACE
0 1 1 UNDEFINED, RESERVED FOR FUTURE USE
1 0 0 UNDEFINED, RESERVED FOR FUTURE USE
] 0 1 SUPERVISOR DATA SPACE
1 1 0 SUPERVISOR PROGRAM SPACE
1 1 1 CPU SPACE (INTERRUPT ACKNOWLEDGE)

9. Miscellaneous
Both Vcc pins and both GND pins must be connected in order
to power the CPU. The clock (CLK) input signal is used to develop

all the synchronizing signals required within the CPU.
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C. PROGRAMMING
Motorola provides programming information in its reference
manual [Ref. 7]. The MC68010’s instruction set includes the

following operations:

- Data Movement - Bit Manipulation

- Integer Arithmetic - Binary Coded Decimal (BCD) Arithmetic
- Logical - Program Control

- Shift and Rotate - System Control

- Bit Manipulation - Multi-processor Communications

supporting the following data types:

- Bit

- BCD (Four-bits)

- Byte (Eight-bits)

- Word (16-bits)

- Long Word (32-bits)

Fourteen addressing modes that are available to the assembly

language programmer. The addressing modes available include:

- Data Register Direct

- Address Register Direct

- Address Register Indirect

- Address Register Indirect with Postincrement
- Address Register Indirect with Predecrement
- Address Register Indirect with Offset

- Address Register Indirect with Index and Offset
- Absolute Short

- Absolute Long

- Program Counter with Offset

- Program Counter with Index and Offset

- Immediate Data

- Quick Immediate

- Implied Register
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The following assets are available:

- Eight Data Registers

- Seven Address Registers

- User Stack Pointer (User Mode)

- Supervisor Stack Pointer (Supervisor Mode)

- Program Counter

- *Status Register (Supervisor mode)

- Vector Base Register (Supervisor Mode)

- Alternate Function Code Registers (Supervisor Mode)
* The condition code register is the lower byte of the

status register and it is accessible in the user mode.

To support virtual-memory, the MC68010 microprocessor allows an
interrupted bus cycle to be re-run after a bus error exception.
The return from exception (RTE) instruction uses the format field
of the exception stack to determine whether the exception was
caused by bus or address error. After a bus or address error

caused the exception, the CPU continues the interrupted instruction

after completion of the exception routire. [Ref. 19]
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APPENDIX B: MINIMAL SYSTEM EXCEPTION VECTOR TABLE AND
MONITOR/DEBUGGER PROGRAM

This appendix contains the source listings of the exception
vector table and monitor/debugger program. The separate file names
are as follows:

- VECTABLE.ASM
- MAIN.ASM

- MESSAGE.ASM
- CONSOLE.ASM
- GETSTRIN.ASM
- GET_ADDR.ASM
- I0_UTIL.ASM
- DECODER.ASM
- BYTEOUT.ASM
- MEM LIST.ASM
- HEXCONV.ASM
- GO.ASM

- STUB.ASM

- REG.ASM

- REGCHANG.ASM
- DOWNLOAD.ASM
- UNUSED.ASM

Using the 2500AD 68010 cross assembler and linker, a Motorola
S-record format file was generated as a load module. The load
module was loaded as a ASCII file into a Data I/0 System 29
Universal Programmer. Once resident in the programmer, the load
module was programmed to erasable programmable read-only memory
(EPROM) . It should be noted that the data section as contained in
MAIN.ASM was not programmed on EPROM, but rather it resides in
random access memory (RAM).

The first two entries in the exception vector table are used
during the system boot up to provide the initial contents for the
stack pointer and the program counter. The exception vector table

contains the addresses of exception routines. The monitor/debugger
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program initializes the MC68681 peripheral device and provides
facilities for performing software debugging and the down-loading

of files from an IBM XT/AT compatible computer.
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Ak KKK KA KA KKAAKARAAKRKA KA AAAKRKAKRA KA A AAA A A A A A A A A A AAk kAR kkhkhkkkhkhkkkkkxkki

* EXCEPTION VECTOR TABLE *
* %k % %k K Kk ok %k %k %k vk sk %k Kk ok sk sk sk sk o Kk k ok K vk vk sk %k K ok dk vk %k ok ok ki kK ok vk %k %k %k ok sk vk ok %k R %k ke gk ko kR ok
* WRITTEN BY LARRY ABBCTT JUNE 5, 1987 *
% %k %k Kk Kk ok sk kK K K Kk ok kR Kk vk ok sk sk ok Ak sk %k T sk sk ok ok ok e vk ok ok A o sk ke ke e ok sk ok ke sk ok ok ki ke Rk R ok ok ok ok ke ok
* FILENAME: VECTABLE.ASM *
sk k %k Kk ok ok k sk ok k ok kK ok ok ok k ko ok ok sk kT ok gk ok sk ke sk ok ok sk ok sk ke sk %k ke ko ke ke k ke ko ok ok ok ke ke ok ok kA ok ok
* VERSION 1.3 *
* REV  DATE NAME DESCRIPTION *
* A 29 SEPT 87 DAVID M. SENDEK ADDITIONAL DOCUMENTATION *
AAKKA A A KA A A A AR A A A A Ak Ak kA hkhkkkAhhkhkhkkhkhkkhkhkhkdhkkhkkkhkhhkhkkkkhkhkhhkkkkx %
* DEFINING MODULES OF EXTERNALLY DECLARED VARIABLES: *
* BKPT - GO.ASM *
* INIT - MAIN.ASM *
* INIT_SP - MAIN.ASM *
* MESSAGE - MESSAGE.ASM *
* MONITOR - MAIN.ASM *
* UNUSED - UNUSED.ASM *
%k %k ok ok sk sk sk %k ok dk sk sk %k ok Kk ok sk sk %k Kk Kk sk %k %k ok ok sk ok %k ki ok gk %k ok sk sk sk sk ok ok ki ki kR K ke ok kR k %k ok ok ok ok ok ok ok ok

EXTERNAL BKPT, INIT, INIT_SP,MESSAGE, MONITOR

EXTERNAL UNUSED

ORG 0 VECTOR TABLE STARTS AT ABSOLUTE ADDRESS $000000

LONG INIT_SP INITIAL STACK POINTER VECTOR

LONG INIT INITIAL PROGRAM COUNTER (PC)

VECTOR

LONG UNUSED BUS ERROR VECTOR

LONG UNUSED ADDRESS ERROR VECTOR

LONG UNUSED ILLEGAL INSTRUCTION VECTOR

LONG UNUSED ZERO DIVIDE VECTOR

LONG UNUSED CHK INSTRUCTION VECTOR

LONG UNUSED TRAPV INSTRUCTION VECTOR

LONG UNUSED PRIVILEGE VIOLATION VECTOR

LONG UNUSED TRACE VECTOR

LONG UNUSED LINE 1010 EMULATION VECTOR

LONG UNUSED LINE 1111 EMULATION VECTOR

ORG $38 NOTE: VECTOR NUMBERS 12 AND 13

; ARE UNASSIGNED, RESERVED

LONG UNUSED FORMAT ERROR VECTOR

LONG UNUSED UNINITIALIZED INTERRUPT VECTOR

ORG $60 NOTE: VECTOR NUMBERS 16-23 ARE

; UNASSIGNED, RESERVED

LONG UNUSED SPURIOUS INTERRUPT VECTOR

LONG UNUSED LEVEL 1 AUTOVECTOR VECTOR

LONG UNUSED LEVEL 2 AUTOVECTOR VECTOR

LONG UNUSED LEVEL 3 AUTOVECTOR VECTOR

LONG UNUSED LEVEL 4 AUTOVECTOR VECTOR

LONG UNUSED LEVEL 5 AUTOVECTOR VECTOR

LONG UNUSED LEVEL 6 AUTOVECTOR VECTOR

LONG UNUSED LEVEL 7 AUTOVECTOR VECTOR
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LONG BKPT TRAP 0 VECTOR USED AS

; MONITOR BRKPT
LONG UNUSED TRAP 1 VECTOR
LONG UNUSED TRAP 2 VECTOR
LONG UNUSED TRAP 3 VECTOR
LONG UNUSED TRAP 4 VECTOR
LONG UNUSED TRAP 5 VECTOR
LONG UNUSED TRAP 6 VECTOR
LONG UNUSED TRAP 7 VECTOR
ORG $100 NOTE: VECTOR NUMBERS 48-63 ARE

; UNASSIGNED, RESERVED
LONG MONITOR USER INTERRUPT 0 VECTOR

; DEFINED FOR MONITOR
LONG UNUSED USER INTERRUPT 1 VECTOR
LONG UNUSED USER INTERRUPT 2 VECTOR
LONG UNUSED USER INTERRUPT 3 VECTOR
LONG UNUSED USER INTERRUPT 4 VECTOR
LONG UNUSED USER INTERRUPT 5 VECTOR
LONG UNUSED USER INTERRUPT 6 VECTOR
LONG UNUSED USER INTERRUPT 7 VECTOR
LONG UNUSED USER INTERRUPT 8 VECTOR
LONG UNUSED USER INTERRUPT 9 VECTOR
LONG UNUSED USER INTERRUPT 10 VECTOR
LONG UNUSED USER INTERRUPT 11 VECTOR
LONG UNUSED USER INTERRUPT 12 VECTOR
LONG UNUSED USER INTERRUPT 13 VECTOR
LONG UNUSED USER INTERRUPT 14 VECTOR
LONG UNUSED USER INTERRUPT 15 VECTOR
LONG UNUSED USER INTERRUPT 16 VECTOR
LONG UNUSED USER INTERRUPT 17 VECTOR
LONG UNUSED USER INTERRUPT 18 VECTOR
LONG UNUSED USER INTERRUPT 19 VECTOR
LONG UNUSED USER INTERRUPT 20 VECTOR
LONG UNUSED USER INTERRUPT 21 VECTOR
LONG UNUSED USER INTERRUPT 22 VECTOR
LONG UNUSED USER INTERRUPT 23 VECTOR
LONG UNUSED USER INTERRUPT 24 VECTOR
LONG UNUSED USER INTERRUPT 25 VECTOR
LONG UNUSED USER INTERRUPT 26 VECTOR
LONG UNUSED USER INTERRUPT 27 VECTOR
LONG UNUSED USER INTERRUPT 28 VECTOR
LONG UNUSED USER INTERRUPT 29 VECTOR
LONG UNUSED USER INTERRUPT 30 VECTOR
LONG UNUSED USER INTERRUPT 31 VECTOR
LONG UNUSED USER INTERRUPT 32 VECTOR
LONG UNUSED USER INTERRUPT 33 VECTOR
LONG UNUSED USER INTERRUPT 34 VECTOR
LONG UNUSED USER INTERRUPT 35 VECTOR
LONG UNUSED USER INTERRUPT 36 VECTOR
LONG UNUSED USER INTERRUPT 37 VECTOR
LONG UNUSED USER INTERRUPT 38 VECTOR
LONG UNUSED USER INTERRUPT 39 VECTOR
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LONG
LONG
LONG
LONG
LONG
LONG
LONG
LONG
LONG
LONG
LONG
LONG
LONG
LONG
LONG
LONG
LONG
LONG
LONG
LONG
LONG
LONG
LONG
LONG
LONG
LONG
LONG
LONG
LONG
LONG
LONG
LONG
LONG
LONG
LONG
LONG
LONG
LONG
LONG
LONG
LONG
LONG
LONG
LONG
LONG
LONG
LONG
LONG
END

UNUSED
UNUSED
UNUSED
UNUSED
UNUSED
UNUSED
UNUSED
UNUSED
UNUSED
UNUSED
UNUSED
UNUJED
UNUSED
UNUSED
UNUSED
UNUSED
UNUSED
UNUSED
UNUSED
UNUSED
UNUSED
UNUSED
UNUSED
UNUSED
UNUSED
UNUSED
UNUSED
UNUSED
UNUSED
UNUSED
UNUSED
UNUSED
UNUSED
UNUSED
UNUSED
UNUSED
UNUSED
UNUSED
UNUSED
UNUSED
UNUSED
UNUSED
UNUSED
UNUSED
UNUSED
UNUSED
UNUSED
UNUSED

USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
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INTERRUPT
INTERRUPT
INTERRUPT
INTERRUPT
INTERRUPT
INTERRUPT
INTERRUPT
INTERRUPT
INTERRUPT
INTERRUPT
INTERRUPT
INTERRUPT
INTERRUPT
INTERRUPT
INTERRUPT
INTERRUPT
INTERRUPT
INTERRUPT
INTERRUPT
INTERRUPT
INTERRUPT
INTERRUPT
INTERRUPT
INTERRUPT
INTERRUPT
INTERRUPT
INTERRUPT
INTERRUPT
INTERRUPT
INTERRUPT
INTERRUPT
INTERRUPT
INTERRUPT
INTERRUPT
INTERRUPT
INTERRUPT
INTERRUPT
INTERRUPT
INTERRUPT
INTERRUPT
INTERRUPT
INTERRUPT
INTERRUPT
INTERRUPT
INTERRUPT
INTERRUPT
INTERRUPT
INTERRUPT

144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191

VECTOR
VECTOR
VECTOR
VECTOR
VECTOR
VECTOR
VECTOR
VECTOR
VECTOR
VECTOR
VECTOR
VECTOR
VECTOR
VECTOR
VECTOR
VECTOR
VECTOR
VECTOR
VECTOR
VECTOR
VECTOR
VECTOR
VECTOR
VECTOR
VECTOR
VECTOR
VECTOR
VECTOR
VECTOR
VECTOR
VECTOR
VECTOR
VECTOR
VECTOR
VECTOR
VECTOR
VECTOR
VECTOR
VECTOR
VECTOR
VECTOR
VECTOR
VECTOR
VECTOR
VECTOR
VECTOR
VECTOR
VECTOR
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* MAIN IS THE ENTRY POINT INTO THE MONITOR. MAIN *
* INITIALIZES THE RS-232 PORT BEFORE ENTERING THE *
* MONITOR. ALSO, MAIN CONTAINS THE MEMORY MAPS, *
* EQUATES AND MEMORY ALLOCATIONS. *
KAKKAKAKAAAAKAAKA XA KA KRAKRA KA AAAKAAAEARAKAAAAAA A KRA KRR ARk hkkkhkkkkkkkkkkkhkkkxk
* 68K MONITOR VERSION V1.3 - AN ACCUMULATION OF ALL *
* PRIOR VERSIONS *
* COPYRIGHT @ AUG. 1986 BY DR. LARRY ABBOTT *
AKX AKAKAKAAAKAAAKA KA AAKRAKAA KA A AR A KR AR K AI KKK KA hk A AR Rk kkkkkokkkkkkhkkkkkkkxk
* FILENAME: MAIN.ASM x
Ak kkkk kA A kA A A A A AR A AKX A XA A A A A A AKX I A A AR A A A A AR A A AR ARk ARk Akhkkkkkk k%
* VERSION 1.3 *

* REV. MODIFIED BY DATE DESCRIPTION *
* A LARRY ABBOTT 11/7/86 *
* B LARRY ABBOTT 12/14/86 MONSTAT-ESCAPE *
* C LARRY ABBOTT 6/6/87 ADAPT TO MC68681 *
* D DAVID M. SENDEK 29 SEPT £7 ~-INCLUDE VECTOR TABLE *
* ~INCLUDE MONITOR PROMPT *
* ~CORRECT FOR 68681 *
Kok Kk kA KKK AR ARk A KA A KR KA R kA A kAR kAR R Rk kA kA Kk Ak kK k Ak x Kk Ak kK k Kk k % %
o DEFINING MODULES OF EXTERNALLY DECLARED V7RIABLES: *
* CMD _DECODE - DECODER.ASM >
* GETSTRING GETSTRIN.ASM *
* MESSAGE - MESSAGE.ASM *
* MONMSG - MESSAGE.ASM *
* SCRLF - I0 UTIL.ASM *
* *

KAKA KA KA KR AR KA ARk ARk kA k kA Kk khk Ak xk Ak kA kkdk ko kk kK ok k Kk % k k& % k k & %

GLOBAL BKPTAB, BS, BTLEN, BUFFIN, CHECKSUM, CK_SUM
C LOBAL CONTINUE, CR
GLOBAL END_ADDRESS, EPROMRNG, EPROMWR, ESC, ESCAPE
GLOBAL FOUND, FWDARW, HEX_ERR, LF,MODIFY, MONSTAT,
GLOEAL NULL, PORT1, PORT2, RBA, RECFULL
GLOBAL SPACE, SRA, SRAM, SRAMSIZE, STRING, STRINGEND
GLOBAL SYSTAX, SRB, TBA, TBB, RBB
GLOBAL TBA, XEMPTY
GLOBAL INIT SP,INIT,MONITOR
EXTERNAL CMD_DECODE, GETSTRING, MESSAGE, MONMSG, SCRLF
EXTERNAL PROMPT
*
DATA ALL R/W DATA IS STORED IN SRAM AT ADDRESS
* $010000
*
* EQUATES
*
BS EQU $08 ASCII CODE FOR <-- (BACKSPACE)
CR EQU $OD ASCII CODE FOR RET'JRN
EPROMRNG  EQU $3FF  EPROM RNG 0 -> $3FF (EXCEPTION TBL)
ESC EQU $1B ASCII CODE FOR ESCAPE
FWDARW EQU $3E ASCII CODE FOR ’'>' (FORWARD ARROW)
LF EQU $0A ASCII CODE FOR LINEFEED

84




NULL EQU $00 ASCII CODE FOR NUL

SPACE EQU $20 ASCII CODE FOR SPACE

BTLEN EQU $10 BREAKPOINT TABLE LENGTH IN WORDS
*

* MEMORY ALLOCATIONS

*

BKPTAB BLKW 3/2*BTLEN RESERVE BTLEN/2 32-BIT BKPT’s
BUFFIN BLKB $3F RESERVE 63 BYTE INPUT BUFFER
END_ADDRESS BLKW 2 RESERVE WORD FOR END ADDRESS
MONSTAT BLKW 1 RESERVE A WORD FOR MONITOR STATUS
STAX BLKW 36 SAVE AREA FOR APPLICATION REG’S
SYSTAX BLKW 2 RESERVE MEMORY FOR STACK POINTER
CK_SUM BLKW 1 CHECK SUM STORAGE

SRAM EQU BKPTAB DATA BEGINS AT LOW ADDR OF SRAM
SRAMSIZE EQU $3FFF 16K BYTES OF STATIC RAM

INIT_SP EQU $013FFE  INITIAL STACK POINTER

*

* DEFINITION OF MONSTAT (MONITOR STATUS WORD)

*

EPROMWR EQU 0 WRITE TO EPROM FLAG

ESCAPE EQU 1 ESCAPE FLAG

CONTINUE EQU 2 CONTINUATION FLAG

FOUND EQU 3 CMD FOUND FLAG

HEX_ERR EQU 4 HEX CONVERSION ERROR

MODIFY EQU 5 MEMORY MODIFY FLAG

STRING EQU 6 STRING BUILDING IN PROGRESS
STRINGEND  EQU 7 END OF STRING BUILDING

CHECKSUM EQU 8 CHECKSUM ERROR FLAG

*

x 68681 EQUATES

*

RECFULL EQU $00 SRA(0)=1=>RECEIVE FIFO HAS A CHAR
XEMPTY EQU $02 SRA(2)=1=>XMIT HOLDING REG EMPTY
MR1RFSET EQU $1A RESET MODE REG PTR & DISABLE XMIT/RECV
CLK_SRC EQU $30 XTAL/16 CLOCK

CONF_1AB EQU $13 8-BIT DATA, NO PARITY

CONF_2A EQU $07 1 STOP BIT

CONF_2B EQU $OF 2 STOP BITS

BAUDZ400 EQU $88 2400 BAUD

BAUD9600 EQU $BB 9600 BAUD

EN_PORT EQU $45 RESET ERROR, ENABLE XMIT & RECV
RUPT#ASK EQU $02 ENABLE RECV READY RUPT

RUPTVECT EQU $40 USER INTERRUPT 0 VECTOR

*

* 68681 REGISTZRS

*

* CRT <- PORT A:9600 BAUD,8 DATA BITS,

x NO PARITY,1 STOP BIT

* DOWNLOAD <- PORT B:2400 BAUD,8 DATA BITS,

* NO PARITY,2 STOP BITS

*
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DUART
PORT1
PORT2
MR1A
MR2A
SRA
CSRA
CRA
RBA
TBA
IPCR
ACR
ISR
IMR
CUR
CTUR
CLR
CTLR
MR1B
MRZB
SRB
CSRB
CRB
RbBB
TBB
IVR
OPCR
*

INIT:

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

CODE
LEA
CLR.W
MOVE.B
MOVE.B

MOVE.B
MOVE.B

MOVE.
MOVE.
MOVE,

W w w

MOVE.
MOVE.
MOVE.

www

MOVE.

w

MOVE.B

MOVE.B

$7F7000
DUART
DUART+$10

DUART, A4
MONSTAT

BASE ADDRESS FOR MC68681

PORT A

PORT B

R/W:MODE REG 1 FOR PORT A
R/W:MODE REG 2 FOR PORT A

R :STATUS REGISTER FOR PORT A
:CLOCK SELECT REGISTER A
:COMMAND REGISTER FOR PORT A
:RECEIVER BUFFER FOR PORT A
:TRANSMITTER BUFFER FOR PORT A
: INPUT PORT CHANGE REGISTER
:AUXILIARY CONTROL REGISTER
:INTERRUPT STATUS REG
:INTERRUPT MASK REGISTER
:COUNTER MODE: CURRENT CNTR MSB
:COUNTER/TIMER UPPER REGISTER
:COUNTER MODE: CURRENT CNTR LSB
:COUNTER/TIMER LOWER REGISTER
:MODE REG 1 FOR PORT B

:MODE REG 2 FOR PORT B

:STATUS REGISTER FOR PORT B
:CLOCK SELECT REGISTER B
:COMMAND REGISTER FOR PORT B
:RECEIVER BUFFER FOR PORT B

: TRANSMITTER BUFFER FOR PORT B
:INTERRUPT VECTOR REGISTER
:OUTPUT PORT CONFIGURATION REG

E ==

My ™ W N W W
~~
s = 5 =

oW
~
== ==

A4 <-- PTR TO DUART
CLR MONITOR STATUS WORD

#MR1RESET,CRA (A4) RESET PORT A MR1 PTR,

DISABLE XMIT & RECV

#MR1RESET,CRB (A4) RESET PORT B MRl PTR,

DISABLE XMIT & RECV

#CLK_SRC, ACR (A4) CNTKk/TMR CLK FROM CRYSTAL/16
#CONF_1AB,MR1A (A4) PORT A:8 DATA BITS & NO

PARITY

#CONF_2A,MR2A(A4) PORT A: 1 STOP BIT
#BAUD9600, CSRA (A4) PORT A: 9600 BAUD
#CONF_1AB,MR1B(A4) PORT B:8 DATA BITS & NO

PARITY

#CONF_2B,MR2B (A4) PORT B: 2 STOP BITS
#BAUD2400,CSRB (A4) PORT B: 2400 BAUD
#RUPTVECT, IVR(A4) SET DUART INTERRUPT SERVICE

AT USER INTERRUPT 0

#EN_PORT, CRA (A4) RESET ERRS & ENABLE
XMIT/RCV

#EN_PORT, CRB (A4) RESET ERRS & ENABLE
XMIT/RCV

#RUPTMASK, IMR(A4) RUPT WHEN PORT A RCVS CHAR
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BANNER:BSR
LEA
BSR
BSR
LEA
BSR
LOOP: BRA.S
*

SCRLF
MONMSG, A5
MESSAGE
SCRLF
PROMPT, A5
MESSAGE
LOOP

MONITOR: MOVE.L SP,SYSTAX

MOVEM.L AQ0-A7/D0-D7,-(SP)
LEA STAX, A6

MOVEM.L (A6)+,A0-A5/D0-D7
BSR GETSTRING

BCLR.B #STRINGEND,MONSTAT
BEQ RESTORE

BCLR.B #STRING, MONSTAT
BSR CMD_DECODE

LEA PROMPT, A5

BSR MESSAGE

RESTORE: MOVEM.L
MOVEM.L

RTE
END

MOVE CURSOR TO NEXT LINE

SET MESSAGE POINTER TO MONMSG
CRT<--68010 MONITOR V1.3

MOVE CURSOR TO NEXT LINE

SET UP FOR A PROMPT TO THE CRT
SEND PROMPT TO CRT

WAIT FOR AN INTERRUPT

A0-A5/D0-D7, - (A6)
(SP)+,A0-A7/D0-D7
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SAVE PTR TO APPL REGs
SAVE ALL REGISTERS

SET MONITOR STATE PTR
GET LAST MONITOR STATE
ENTER MONITOR

CHECK FOR END OF STRING
NOT THE END, SO EXIT
CLEAR NEW STRING FLAG
IF END THEN DECODE

SET MSG PNTR TO PROMPT
CRT <- />’ (CRT PROMPT)
SAVE MONITOR STATE
RESTORE ALL REGISTERS




AAAA KK A KAKRAAKAA A A KAAAAAA A A AR AARA A KARKAAA R A Ak A AR ARk kA k kA hhkhkkkkkx

* THIS PROGRAM OUTPUTS MESSAGES TO THE CRT SCREEN. *
T PR K kv ko kK Ak gk ki ki ke sk Rk ko vk ke ke kT ke %k vk R sk sk sk ko kR ok ok ki Rk ke ok ke ok ko ki ki k ok ok ok ok ok ok ok X
* WRITTEN BY DR. LARRY ABBOTT *
KARKKRKAI KX AAIA AKX KR ARAAEARA KA AT AR R Ak hkhkhkkhkhkhk hkkhkkhkkhkkhkhkkkkhohkkhhkkkkkhkkhkxk
* FILENAME: MESSAGE.ASM *
K dkok ok Kk %k sk ko ok %k sk sk sk sk sk ke ok e %k sk ok sk sk ok ok ke ke R R sk sk ok sk sk ok ke ke ke ok ok gk ok gk ke ke ke ki ke ok ke ko ok %k ok ok ok ok ok
* VERSION 1.3 *
* REV. MODIFIED BY DATE DESCRIPTION *
x A DAVID M. SENDEK 29 SEPT 87 -INCLUDE A MONITOR PROMPT*
* -INCLUDE BUFFER FULL *
* CONDITION *
% % % %k ke Kk kK dk ok ok Kk ok ok ke Tk %k %k ok sk ke ok %k %k % sk %k sk sk sk vk ok vk ke ok ok ok %k %k ok sk ok ok ok %k sk ok sk ke ke kb ok ok ok ok ok ok k%
* DEFINING MODULES OF EXTERNALLY DECLARED VARIABLES: *
*

ECHO1 - CONSOLE.ASM *

% ok ke %k ok ok ok ke ok sk ok dk vk sk ok b gk sk ok ok gk sk ok ok ok Sk ke %k ok dk kR %k gk ke ke dk ke ok ok ok ke ko ok ke ks ke ok ki ok ok ok ok ok ke

GLOBAL BKPTMSG, EPROMSG, ERRMSG, HEXMSG, ILLMSG
GLOBAL MONMSG, REGERR, REGMSG, SREC_ERR, USEMSG
GLOBAL MESSAGE, PROMPT, BUFFULLMSG, SPCE
EXTERNAL ECHO1
*
CR EQU $O0D ASCII CODE FOR RETURN
LF EQU $O0A ASCII CODE FOR LINEFEED
NULL EQU $00 ASCII CODE FOR NUL
*
MESSAGE:MOVE.B (AS5)+,DO0 ;GET MESSAGE CHAR,
* INCREMENT POINTER
BEQ.S MSGRET IF CHAR = NULL THEN EXIT
BSR ECHO1 ;OUTPUT CHAR TO CONSOLE
BRA.S MESSAGE ;GET ANOTHER CHARACTER
MSGRET: RTS
BKPTMSG: BYTE "BREAKPOINT TRAP AT '/
BYTE NULL
ERRMSG: BYTE "ERROR RE-ENTER’,CR,LF
BYTE NULL
EPROMSG: BYTE "ATTEMPTED WRITE TO EPROM’,CR,LF
BYTE NULL
HEXMSG: BYTE "HEX CONVERSION ERROR...RE-ENTER’,CR,LF
BYTE NULL
ILLMSG: BYTE "ILLEGAL INSTRUCTION TRAP’,CR,LF
BYTE NULL
MONMSG: BYTE /68010 MONITOR V1.3',CR,LF
BYTE '"WRITTEN BY DR. LARRY ABBOTT’,CR,LF
BYTE @ COPYRIGHT 1986’ ,CR,LF
BYTE NULL
REGERR: BYTE "REGISTER CONTENTS ERROR RE-ENTER’,CR,LF
BYTE NULL
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REGMSG: BYTE ’'DO0=’' ,NULL,’ D1=’,NULL,’ D2=',NULL,’ D3=',

NULL, CR, LF
BYTE 'D4=' ,NULL,’ DS=',NULL,’ D6=’,NULL,’ D7=',
NULL, CR, LF
BYTE 'A0=',NULL,’ Al=’,NULL,’ A2=',NULL,’ A3=’,
NULL, CR, LF
BYTE 'A4=' ,NULL,’ AS='’,NULL,’ A6=',NULL,’ A7=',
CR,LF
BYTE 'SR=' ,NULL,’ PC=',NULL,’ (PC)=',NULL,CR,LF
BYTE 'UsS=',NULL,’ SS='’,NULL,CR,LF
BYTE NULL
SREC_ERR: BYTE 'S RECORD ERROR MESSAGE’,LF,CR
BYTE NULL
USEMSG:  BYTE * UNUSED EXCEPTION ENCOUNTERED’,LF,CR
BYTE 'WITH FORMAT WORD = ’
BYTE NULL
PROMPT:  BYTE 151
BYTE NULL

SPCE: BYTE £
BYTE NULL
BUFFULLMSG: BYTE LF,CR,’INPUT BUFFER IS FULL, TRY AGAIN.’,LF,CR
BYTE NULL
END
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* THIS MODULE INPUTS FROM THE KEYBOARD AND DOWNLOAD PORT, *
* AND IT OUTPUTS CHARACTERS TO THE CRT. *

Je d g Kk sk ok ok k %k Kk % Kk ok sk ok kK kK Kk ok sk ok %k %k ke sk dk ok ok %k dk dke ke ke sk ke e e ke ki sk ok ok ok ok Ak ok ke kb ok ok ok ok ok ok ok

* NEW CONSOLE WRITTEN DEC. 19, 1986 BY DR. LARRY ABBOTT *

I Z P Z PR RS S X RS RS S S SRR RS EREESSRR RS SRE RS RS R SRR R EEREREREEEES]

* FILENAME: CONSOLE.ASM *
Ak AA A KA KAA KA AAA K AARKR A A AR AA A kA A hAAAAhkkhkhkkhkkhhhkhkhkhkkhkkkkkkhkkhkkkhkkkkk
* VERSION 1.3 *
* REV. MODIFIED BY DATE DESCRIPTION *
* A LARRY ABBOTT 6/6/87 ADAPT TO 68681 *
* B DAVID M. SENDEK 30 SEPT 87 DOCUMENTATION UPGRADE *
AhkhkhkkhhdhkdkdhrhAhhkhhkkkhkhhhkhhkhkkhkhkhhkkhkAhkhkhhkkkhARkhhkhkkhkkkhkhkhkkkhkkkk
* DEFINING MODULES OF EXTERNALLY DECLARED VARIABLES: *
* ESCAPE - MAIN.ASM *
* MONSTAT - MAIN.ASM *
* PORT1 - MAIN.ASM *
* PORT2 - MAIN.ASM *
* RECFULL - MAIN.ASM *
* RBA,RBB - MAIN.ASM *
* SRA, SRB - MAIN.ASM *
* TBA, TBB - MAIN.ASM *
* *

AAKKA KA AR AKRARAA A A A A AAAAA A KA AR A A I A AR AR A Ak kok ks ko kokkokok kb k ok

GLOBAL ECHO1, ECHO2

GLOBAL GETCHAR1, GETCHR2

GLOBAL SCANCHR2

EXTERNAL ESCAPE, MONSTAT, PORT1, PORT2
EXTERNAL RECFULL, RBA, SRA, TBA, TBB, SRB
EXTERNAL XEMPTY, RBB

*

ESC EQU $1B ASCII CODE FOR ESCAPE
*

GETCHAR1: LEA PORT1, A4 POINT TO RS_232 PORT 1
BTST.B #RECFULL, SRA (A4) CONSOLE CHAR READY ?
BEQ GETCHARI1 - NO, CHECK AGAIN
MOVE.B RBA (A4),DO - YES, GET CHAR
RTS

GETCHAR2: LEA PORT2, A4 POINT TO RS-232 PORT 2
BTST.B #RECFULL, SRB (A4) CONSOLE CHAR READY ?
BEQ GETCHAR2 - NO, CHECK AGAIN
MOVE.B RBB(A4),D0 - YES, GET CHAR
RTS

SCANCHAR GETS A CHARACTER FROM A PORT IF IT IS THERE
OTHERWISE, SCANCHAR RETURNS TO THE CALLING ROUTINE

* % * *

SCANCHR1 LEA  PORT1,A4 POINTS TO RS-232 PORT 1
BTST.B #RECFULL, SRA(A4) DOES PORT 1 HAVE A CHAR?
BEQ.S SCAN1_EX - NO, EXIT
MOVE.B RBA (A4),D0 - YES, GET CHAR
SCAN1_EX RTS
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SCANCHR2 LEA PORTZ, A4

POINTS TO RS-232 PORT 2

BTST.B #RECFULL, SRB(A4) DOES PORT 2 HAVE A CHAR?

BEQ.S SCAN2_EX
MOVE.B RBB (A4),D0
SCAN2 EX RTS
*

- NO, EXIT
- YES, GET CHAR

* WHILE DOWNLOADING CHARACTERS FROM PORT 2, THIS PROCESS CAN BE
* HALTED BY SENDING AN ESC CHARACTER FROM THE KEYBCARD TO PORT 1

*

GETCHR2 BSR SCANCHRI1
CMP.B #ESC,DO
BEQ GC2_EXIT
BSR GETCHARZ2
BRA.S EXIT GC2

GC2_EXIT BSKT.B #ESCAPE,MONSTAT

EXIT GC2 RTS
*

ECHO2 LEA PORT2, A4
BTST.B #XEMPTY, SRB (A4)
BEQ ECHO2
MOVE.B DO, TBA (A4)

RTS

ECHO1 LEA PORT1, A4
BTST.B #XEMPTY, SRA (A4)
BEQ ECHO1
MOVE.B DO, TBA (A4)
RTS

*
END
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GET CHAR FROM PORT 1, IF PRESENT
IS THE CHAR AN ESCAPE ?

- YES, SO EXIT

- NO, GET DOWNLOAD CHAR

IF ESC CHAR, SET MONSTAT BIT

POINTS TO RS-232 PORT 2

IS CONSOLE XMIT RDY ?

- NO, CHECK AGAIN

- YES, OUTPUT CHAR TO PORT 1

POINTS TO RS-232 PORT 1

IS CONSOLE XMIT RDY 2

- NO, CHECK AGAIN

- YES, OUTPUT CHAR TO PORT 1
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*THIS PROGRAM BUILDS THE CMD STRING INPUT FROM THE KEYBOARD.*

AAKAAA A KA KA A A AR AKRA AR AL AR KA A ARAAAA A AARA A AR AR AR A AR AR AR A Rk kA kkk k%

* WRITTEN BY DR. LARRY ABBOTT *
R R R g g s R T S S Y
* FILENAME: GETSTRIN.ASM *
kK kAR KR A kAR A kAR R R AR Ak ARk kA AR AR Kk Ak kk kA k kA kkkkkkkk Rk k kk kX
* VERSION 1.3 *
* REV. MODIFIED BY DATE DESCRIPTION *

* A DAVID M. SENDEK 2 OCT 87 DOCUMENTATION UPGRADE *

kK Kk Kk Kk %k gk sk ok ke ks kg ok k sk sk ok ok k k ok ok sk ke vk ke ok ok vk ke ok vk ok ok ke sk ok ke ok ke ko ok ok k ke ki ok ok ok ok ki k ok ok ke ke

* DEFINING MODULES OF EXTERNALLY DECLARED VARIABLES: *
* BS - MAIN.ASM MESSAGE - MESSAGE.ASM *
* BUFFIN - MAIN.ASM SPCE - MESSAGE.ASM *
* CR - MAIN.ASM *
* CMD DECODE - DECODER.ASM *
* ECHO1 - CONSOLE.ASM *
* GETCHAR1 - CONSOLE.ASM *
* MONSTAT - MAIN.ASM *
* STRING - MAIN.ASM *
* STRINGEND -~ MAIN.ASM *
* BUFFULLMSG - MESSAGE.ASM *
KA KA A KA KKK IR K AR KR KA KRR AR KRR AR AR R AR KA AR AR KRR Kk AR ARk KKKk k ok k k% %

GLOBAL GETSTRING

EXTERNAL BS,BUFFIN,CR,CMD_DECODE, ECHOl, GETCHARI1
EXTERNAL MONSTAT, STRING, STRINGEND

EXTERNAL BUFFULLMSG, SPCE

EXTERNAL MESSAGE

*

GETSTRING:BSET.B #STRING,MONSTAT IS THIS A NEW STRING ?
3NE BUILD - NO, SKIP PTR INIT
BCLR.B #STRINGEND,MONSTAT - YES,CLR STRG END BIT
LEA BUFFIN+1,A0 - YES, INIT STRING PTR

BUILD: BSR GETCHAR1 DO <- CHR FROM CRT
CMP.B #CR,DO IS CHAR A CR ?
BNE ADD_ STRING - NO, ADD CHAR TO STRG
BSET.B #STRINGEND,MONSTAT - YES,3ET STRG END BIT
MOVE.W AQ,DO - YES, D0 <-- CURRENT

* BUFFIN PTR
SUB.W #BUFFIN+1,DO0 - YES, CALC BUFFIN LEN
MOVE.B DO, BUFFIN - YES, BUFFIN(0)<-

* BUFFIN LENGTH
BRA STRING_EXIT - YES, EXIT

ADD_STRING: BSR ECHO1 ECHO CHAR TO CRT

BSR CONCAT ADD CHAR TO END OF STRG

STRING_EXIT:RTS
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* CONCAT CONCATENATES THE CHAR ONTO THE END OF THE STRING

*

CONCAT: CMP.B #BS,DO IS INPUT CHAR A BACKSPACE?
BEQ BKSPACE - YES, GOT BACKSPACE
CMPA.L BUFFIN+63,A0 IS BUFFIN FULL ?
BNE ADD TO STRING =- NO, ADD BYTE TO STRING

LEA BUFFULLMSG,A5 - YES, SET UP POINTER
* FOR MESSAGE
BSR MESSAGE - YES, SEND MSG TO CRT
BRA CONCAT_EXIT - YES, NOW EXIT
ADD TO_STRING:MOVE.B DO, (A0)+ ADD BYTE TO STRING
BRA CONCAT EXIT
BKSPACE: CMPA.L RUFFIN, AQ IS BUFFIN PTR POINTING TO
* 1st BYTE ?
BEQ CONCAT EXIT - YES, EXIT
SUBQ.W #1,A0 - NO, BACKUP BUFFIN PNTR
LEA SPCE, A5

BSR MESSAGE
CONCAT_EXIT:RTS
END
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* GET_ADDRESS CONVERTS THE START AND END ADDRESS TO HEX. *
s % % sk sk b %k Jr gk ok ok kb ok Jk ok % % dk ok ok %k ok b ok b ok e sk %k d vk vk gk ok ok o ok ok sk %k A gk dk ok gk sk ki ok % ok ok ok ki ok kR ok %k ok kK
* WRITTEN BY DR. LARRY ABBOTT x
K %k oKk Kk ok Kk K vk sk sk %k ek ok %k ok sk sk sk %k dk sk sk e vk sk %k gk ki ok etk ok ok sk ok kA ok ke ki k kK ke ok ket ok ok kR ok ok ke ok ok
* FILENAME: GET ADDR.ASM *
AR A AR KA KK R A IR A AR A KA AR KA AR h AR A KRR KRR KRR KA KRR A KRAR A KRR AR KRR R KKK R K k&
* VERSION 1.3 *
* REV. MODIFIED BY DATE DESCRIPTION *
x A DAVID M. SENDEK 30 SEPT 87 DOCUMENTATION UPGRADE*
AAKAKAKAAKAKAAAKAKAAAAKAAARFIARAAKAKRAAKRAAKRKAAKAK A A AR AR KK KA KAk kKX KKKk Kk k kkkxxk
* DEFINING MODULES OF EXTERNALLY DECLARED VARIABLES: *
*  BUFFIN - MAIN.ASM *
*  END_ADDRESS - MAIN.ASM *
*  HEX_CONV - HEXCONV.ASM *
*  HEX_ERR - MAIN.ASM *
*  MONSTAT - MAIN.ASM *
*  HEXMSG - MESSAGE.ASM *
*  MESSAGE - MESSAGE.ASM *
AAKAKAKAAAKRKAAARA AKX AAAXKAAA A A A A KA AAKNARAR KA A AR A A KA Ak ARk Kk AkKhkkhkkkkkkkx

GLOBAL GET_ADDR
EXTERNAL BUFFIN,END ADDRESS,HEX CONV,HEX_ ERR

EXTERNAL MONSTAT, HEXMSG, MESSAGE
*

GET_ADDR: CLR.L D2 CLEAR HEX BUFFER
LEA 0,A2 CLEAR START ADDRESS
LEA 0,A3 CLEAR END ADDRESS
CLR D3
MOVE.B BUFFIN, D3 D3 <-- BUFFIN LENGTH
BLE EXIT EXIT IF NULL CMD STRING
SUBQ.W #1,D3 ADJUST FOR DBCC INST
START_ADDR:MOVE.B (A0)+,DO0 DO <-- BUFFIN({(I) &
* I <-1+1
CMP.B #7,’,DO IS CHAR IN DO A COMMA ?
BEQ STORE_START - YES, INDICATE END OF
* START ADDRESS
BSR HEX_CONV CONVERT 1 CHAR OF START
* ADDR TO HEX
BTST.B #HEX_ERR,MONSTAT WAS THERE AN HEX
* CONVERSION ERROR ?
BNE ADDR_ERR - YES, EXIT ROUTINE
DBF D3,START_ADDR IF MORE CHARACTERS CONT
STORE_START:SUBQ.W #1,D3 ADJUST LENGTH FOR COMMA
MOVE.L D2,AZ2 STORE START ADDRESS IN A2
CLR.L D2 CLEAR HEX BUFFER
*
* D3 CONTAINS THE LENGTH OF THE REMAINING COMMAND LINE
*
TST.W D3 IS BUFFIN LENGTH < 0 ?
BMI ADDREXIT - YES,EXIT WITH END.ADDR=0
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END_ADDR:MOVE.B (AQ0)+,D0 DO <-- BUFFIN(I, & I <- I+1

BSR HEX_ CONV CONVERT 1 CHAR OF END

* ADDR TO HEX
BTST.B #HEX ERR,MONSTAT WAS THERE AN HEX

* CONVERSION ERROR ?
BNE ADDR _ERR - YES, EXIT ROUTINE
DBF D3,END_ADDR IF MORE CHARS CONTINUE
MOVE.L DZ2,A3 ELSE STR END ADDR IN A3

ADDREXIT MOVE.L A3,END_ ADDRESS SAV END ADR IN MEM
BRA EXIT

ADDR _ERR LEA HEXMSG, AS
BSR MESSAGE

EXIT RTS
END
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%k ok Kk ok Kk ok ok ok sk ok k kK ok sk b ok ok k% sk ko ok ok ok ok ok sk sk sk ok ok ok ok gk ok ok ok ok ok ok o ok ok sk ok ok o ok ok ok ok ok ok ok ok ok

* THIS PROGRAM CONTAINS A GROUP OF CONSOLE UTILITIES. *
%k Kk Kk Kk Kk Kk Kk ok k ok Kk k ok kv k ok Tk %k %k ok sk %k ok sk k% ok %k ok Kk kR ok R sk %k ok sk gk sk ok sk ok A ok ok sk ok ok ok ok ok ok ok ok ok ok ke
* WRITTEN BY LARRY ABBOTT JAN. 1986 *
AAKEKKA KK KA KR AAKAAAAAKA A AR AKX AR AAAAA A AR AT AR A A A A AR A A A Ak Ak kA ke ok ok x %
* FILENAME: IO UTIL.ASM *
AKXKIAAAKRAAKAKAAKXARAAKXAA R A A AR A A KA Ak Ak kkkhkkhkkkkh ok kkkkkkhsk koo kokkkx
* VERSION 1.3 *
* REV. MODIFIED BY DATE DESCRIPTION *
x A DAVID M. SENDEK 30 SEPT 87 -DOCUMENTATION UPGRADE *
* -CORRECT FOR 68681 *
AAEKAKKAKAAAAKRKAA A A A A A ARAAAAAARAA AR A A A A IR A A A AR AR AR RAkk ok Ak kkkokkkdkx
* DEFINING MODULES OF EXTERNALLY DECLARED VARIABLES: *
x BS - MAIN.ASM PORT1 - MAIN.ASM *
* CR - MAIN.ASM *
x ECHO1 - CONSOLE.ASM *
* ESC - CONSOLE.ASM *
* FWDARW - MAIN.ASM *
* GETCHAR1 - CONSOLE.ASM *
* LF - MAIN.ASM *
* RECFULL - MAIN.ASM *
* SRA - MAIN.ASM *
* SPACE - MAIN.ASM *
% oKk ok ok ok Kk ok %k K ok Kk ok k k Kk ok vk %k ok ki ok %k ok ok %k ok ke sk vk ok vk %k Kk ke sk k ke k sk kR ok sk %k %k %k %k sk %k ok kb k ok ok ok k ke %

GLOBAL BACKSPACES, SCROLL, SCRLF, SPACES
EXTERNAL BS,CR,ECHO1,ESC, FWDARW, GETCEAR], LF
EXTERNAL RECFULL, SFACE

EXTERNAL SRA,PORT1

* BACKSPACES MOVES THE CURSOR ON THE CRT TO THE LEFT
* N TIMES
BACKSPACES:SUBQ.W #1,D2 ADJ INDEX FOR THE # OF BK_SP
BK_SPACE: MOVE.B #BS,D0 DO <- ASCII CODE FOR BACKSPACE
BSR ECHO1 OUTPUT BACKSPACE TO CONSOLE
DRF D2,BK_SPACE IF MORE BCKSP LOOP TO BK_SPACE
RTS
*
* SCRLF SEND A CARRIAGE RETURN AND A LINEFEED
* TO THE CONSOLE
*
SCRLF: MOVE.B #CR, D0 DO <-- ASCII CODE FOR CR
BSR ECHO1 OUTPUT CR TO CONSOLE
MOVE.B #LF,DO0 DO <-- ASCII CODE FOR LF
BSR ECHO1 OUTPUT LF TO CONSOLE
RTS
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* SPACES MOVE THE CURSOR ON THE CRT TO THE RIGHT N TIMES
*
SPACES: SUBQ.W #1,D2 ADJUST INDEX FOR THE # OF SP
SPACE_LOOP :MOVE.B #SPACE, D0 ASCII CODE FOR '/ !

BSR ECHO1 OUTPUT SPACE TO CONSOLE

DBF D2, SPACE LOOP IF MORE SPACES LOOP TO SPACE

RTS
* SCROLL ALLOWS THE SCREEN SCROLL TO BE ABORTED BY AN ESC
* OR STOPPED AND STARTED BY ANY OTHER KEY
*
SCROLL:  LEA PORT1, A4

BTST.B #RECFULL,SRA(A4) GET CONSOLE STATUS

BEQ.S  SCROLL _EXIT IF NO CHAR FROM
* CONSOLE, EXIT

BSR GETCHAR1 ELSE GET CHAR

CMP.B  #ESC,DO IS THE CHAR AN ESC?

BEQ.S  SCROLL_EXI - YES, ABORT
PAUSE_CHK:LEA PORT1, A4

BTST.B #RECFULL, SRA(A4) GET CONSOLE STATUS

BEQ.S  PAUSE_CHK IF NO NEW KEY STROKE, WAIT

BSR GETCHAR1 ELSE GET CHAR
SCROLL_EXIT:RTS

END
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AohkhkAkkkkk kA Akbhk bk hhdhb bbb hkkhkhhhkhkkhkhkhhkkhkhkhkkkkhhkkkhkkkkkkxk

* THIS PROGRAM DECODES COMMANDS FROM THE COMMAND LINE. *
sk Kk K Kk %k %k Kk %k %k %k d sk ok sk k% vk vk ok ke sk sk %k sk ok vk ok ke ok ok % gk gk sk % %k ke vk %k % gk ok sk %k ok e ok sk %k ok ok ki k k k ok ok
* 68K MONITOR VERSION 1.3 *
* WRITTEN BY DR. LARRY ABBOTT NOV. 7, 1986 *
%ok K Yok gk ok ok ok ok ok k k A R %k % % vk k% ok ok %k ok ok ok %k ok sk ok sk ok vk ok %k ok ok Y %k ok ok ok sk %k kK ok ok kK ok ok ok kK X
* FILENAME: DECODER.ASM *
% % J o sk ok dk gk %k ok dk d gk %k dk gk sk gk %k ke sk ok vk ok vk ok sk ok ok ke ok sk ok %k ok sk sk %k o sk ok %k Kk k% ok %k sk dk %k %k ok ok %k ok ok ok ok %
* VERSION 1.3 *
* REV. MODIFIED BY DATE DESCRIPTION *
* A DAVID M. SENDEK 1 OCT 87 DOCUMENTATION UPGRADE *
% %k % %k %k Kk sk k% Kk ok sk v %k %k %k k% ok b sk ok %k ok %k sk gk %k ok sk %k vk ok %k %k sk vk %k ok ok ok %k ok sk % ok %k ok vk ok sk %k %k sk ok %k %k %k ok k%
* DEFINING MODULES OF EXTERNALLY DECLARED VARIABLES: *
* BUFFIN - MAIN.ASM BKPT_LIST -~ STUB.ASM *
* ERRMSG - MESSAGE.ASM DOWNLOAD - DOWNLOAD.ASM  *
*  FOUND - MAIN.ASM GO - GO.ASM *
* MESSAGE - MESSAGE.ASM MEM DISPLAY - MEM LIST.ASM  *
* MONSTAT - MAIN.ASM MEM MODIFY - MEM LIST.ASM  *
* NULL - MAIN.ASM NO_BKPT - STUB.ASM *
*  SPACE - MAIN.ASM REG ~ REG.ASM *
*  SCRLF - IO _UTIL.ASM REGCHANG - REGCHANG.ASM *
*  BKPT - GO.ASM *
KA I A A AKX AA KA KA AKRAKA KR A A A A A A KA AR A KA ArA kA khhAhbkkhkhkhkkkhkhkkkkhkhkkhkkkkkkkkxk
* COMMAND FORMATS: *
* LEGEND : < .. > - OPTIONAL *
* { ..} -~ SELECT ONE ITEM *
* XX - NUMBER 0 -> 15 *
* NOTE : ALL ADDRESSES AND VALUES IN HEX *
* *
*  BREAK POINT - BR (NOT IMPLEMENTED) *
* NO BREAKPOINT - NOBR (NOT IMPLEMENTED) *
*  DOWNLOAD - LOAD *
* GO - GO address <,break point address> *
*  MEMORY MODIFY - MM start address <,end address> *
*  MEMORY DISPLAY - MD start address <,end address> *
* REGISTER CHANGE - RCH { Axx,Dxx,PC,US,SP, SR} value *
* DISPLAY REGISTERS- REG *
% % J Kk ok kK ok %k Kk sk gk kK Sk ok sk %k ok sk sk %k %k sk ok sk ok ke ok sk ok ok ok sk %k kg %k sk ke ok sk ok ok %k ke ok %k kR Rk %k ok ok ok ok ok ok ok

GLOBAL CMD_DECODE

EXTERNAL BUFFIN, ERRMSG, FOUND, MESSAGE, MONSTAT, NULL
EXTERNAL SPACE, SCRLF

EXTERNAL BKPT, BKPT_LIST, DOWNLOAD, GO

EXTERNAL MEM DISPLAY,MEM MODIFY,NO_BKPT, REG, REGCHANG

*
*

CMD_DECODE: LEA COMMANDS, Al INITIALIZE COMMAND POINTER
BCLR #FOUND, MONSTAT
DECODE_INIT:LEA BUFFIN+1,AQ INITIALIZE BUFFIN POINTER
MOVE.L #3,D1 INIT INDEX FOR 4 CHARS
98




SCAN: MOVE.B (Al)+,DO0 GET COMMAND.TABLE(I)
* & I<--I+1
CMP.B #SPACE, DO IS CHARACTER A SPACE ?
BEQ FOUND_CMD - YES, FOUND COMMAND
CMP.B #NULL,DO IS CHARACTER A NULL ?
BEQ NO_CMD - YES, EXHAUSTED COM TABLE
CMP.B (AQ)+,DO IS BUFFIN = COMMAND.TABLE ?
DBNE D1, SCAN - YES & MORE CHAR, CONT
BNE ADDR FIELD - NO, ADJUST ADDR FOR NEXT
* COMMAND
FOUND CMD: BSET #FOUND, MONSTAT SET COMMAND FND STATUS BIT
CMPI.W #0,D1 IS COMMAND A 4 CHAR COM?
BMI CMD_FOUND - YES, SKIP "JUMP ADDRESS"
* ADJUST
ADDR_FIELD: ADDQ.L #2,D1 ADJUST INDEX FOR NEXT COM
ADD.L D1,Aal ADD INDEX TO COMMAND PNTR
BCLR #FOUND, MONSTAT CLEAR COM FOUND STATUS BIT
BEQ DECODE_INIT CHECK NEXT CMD
SUB.L #5,D1
ADD.B D1,BUFFIN ADJUST BUFFIN LENGTH
SUBQ.L #2,Aal ADJUST ADDRESS FOR JUMP
CMD_FOUND: MOVE.W (Al),Al GET JUMP ADDRESS
JSR (Al) JUMP TO COMMAND
BRA DECODEXT EXIT DECODER
NO _CMD: BSR SCRLF
MOVE.W #ERRMSG, AS SET MESSAGE POINTER
BSR MESSAGE PRINT ERROR MESSAGE TO CRT
DECODEXT: RTS
*
EVEN ON
COMMANDS: BYTE 'BR '
WORD BKPT_LIST
BYTE " LOAD!'
WORD DOWNLOAD
BYTE 'Go !
WORD GO
BYTE 'MDp !
WORD MEM DISPLAY
BYTE MM
WORD MEM MODIFY
BYTE ’ NOBR'
WORD NO_BKPT
BYTE "RCH '
WORD REGCHANG
BYTE 'REG '
WORD REG
BYTE NULL, NULL, NULL, NULL
EVEN OFF
END

99




Kk Kk ok Kk ok gk gk ok Kk k% Kk ke k kv ok gk ke ok Kk ok vk ok ok ok e %k sk gk ok sk ok sk ok gk vk sk ok ok % ok ke ok ke ok ok ok ok ok ok Ak k ok ok ke %k

* THIS PROGRAM CONVERTS A BYTE INTO 2 ASCII CHARACTERS AND *

* IT SENDS THE CHARACTERS TO THE CRT DISPLAY. *
AEKAKAKEKRA AR KAA KA RKA AR AR AR A AR A A AR A AR KAk T R AR A AR AR kR ARk k ok ok kkk ok kkkkk
* WRITTEN BY DR. LARRY ABBOTT *
%k Kk kK kK Kk sk Kk ke de ok ke ke k sk sk sk k% ok %k sk ok sk ke sk vk ke dk % ok ke sk vk sk sk ki ok ki gk ok ok Kk sk ke sk ok ok ok %k ok ko kK ok ok ke ok
* FILENAME: BYTEOUT.ASM *
% Kk ko ok Kk Kk ok %k %k ok Kk ke %k ke ok vk ok gk sk ok ok ok ok ok ok ok gk ok ke vk ok ke ke ko ok ok Ak ke k& ok ok ke ke k ok sk ok ok ok ok %k ok ok X
* VERSION 1.3 *
* REV. MODIFIED BY DATE DESCRIPTION *
* A DAVID M. SENDEK 1 OCT 87 DOCUMENTATION UPGRADE *
A A AA A KA A A RAKAAAAAKRA AR A AR KRR AR A A AR A AR A AR R AR ARk kkkokkkkkkkkxk
* DEFINING MODULES OF EXTERNALLY DECLARED VARIABLES *
* ECHO1 - CONSOLE.ASM *

%k K %k %k %ok Kk dk ok dk ok ok ok gk ok ok ke ok ke ok gk ok sk ke ok kv sk g ok e sk gk sk sk dk ok ok ok ok gk ok gk ok ok gk ok ok ke %k ok ke ok ok ok ok ok ok ok Kk Kk

GLOBAL OUTPUT BYTE

EXTERNAL ECHO1

*

OUTPUT_BYTE:MOVE.B DO,D2 MAKE A TEMPORARY COPY OF BYTE
LSR.B #4,D0 SHIFT M.S. NIBBLE TO L.S. NIBBLE
BSR ASCONV CONVERT M.S. NIBBLE TO ASCII
MOVE.B D2,DO0 DO <-- TEMPORARY COPY OF BYTE
ANDI.B #$0F,D0 MASK OFF M.S. NIBBLE
BSR ASCONV CONVERT L.S. NIBBLE TO ASCII

RTS
ASCONV: ADDI.B #$30,D0 ADD ASCII BASE

CMP.B #$3A,D0 IS NUMBER 0-9 ?

BLT ASCOUT - YES, OUTPUT TO CONSOLE

ADDQ.B #7,D0 ADJUST FOR A - F (HEX)
ASCOUT: BSR ECHO1 OUTPUT TO CONSOLE

RTS

END
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KAk Ak kAR ARk kb khkkkhkhkhkhkhkkkkkhkhkhhkhkkhkhkhkhhhhhkhkhkhkhkhkhhkkkkkkkhk

* THIS PROGRAM MODIFIES OR LISTS THE CONTENTS OF THE *
* SPECIFIED MEMORY LOCATIONS. *
Kk Kk Kk Kk %k sk Kk Kk Aok ok kK k ok %k sk sk e %k ok ok %k sk %k gk ok ke ok ok sk ok sk vk ke ok ok sk ok sk ok ok %k sk ok ok ok ok kR ok ok ok ok ok ok ok ok
* WRITTEN BY DR. LARRY ABBOTT *
% ok % Kk Kk vk Kk kK sk ok kK %k Ak sk vk ok Kk gk ke ok sk ok Kk kR Kk gk A gk sk ok ke ok ke ok sk ok ke ki ok ki ok Ak ok ok kK ok ok ok ok ok ok Kk
* FILENAME: MEM LIST.ASM *
k %k ek d Kk k %k % Kk Kk ek %k ok Kk ok Kk k sk kK ke %k ok gk sk gk ke ok ok sk ok ke sk ok sk dk vk vk sk ok kA ok sk ok ok ok ok kR ok ok ok k ko ok ok
* VERSION 1.3 *
* REV. MODIFIED BY DATE DESCRIPTION *
* A DAVID M. SENDEK 1 OCT 87 DOCUMENTATION UPGRADE *
%k Kk Kk k dk k Kk ok K gk ok ok ok %k % sk ok kK k% ok sk gk ok ok ok 3k sk ot ok ok sk ok ok ok gk ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok kR ke k ke ok
* DEFINING MODULES OF EXTERNALLY DECLARED VARIABLES: *
*  BUFFIN - MAIN.ASM MONSTAT - MAIN.ASM *
* BACKSPACES - 1I0 UTIL.ASM QUTPUT_BYTE - BYTEOUT.ASM *
* END_ADDRESS - MAIN.ASM SCRLF - I0 UTIL.ASM *
* ESC - MAIN.ASM SCROLL - 10 _UTIL/ASM *
* GET_ADDR - GET_ADDR.ASM SPACE - MATN.ASM *
* GETSTRING - GETSTRIN.ASM SPACES - 10 _UTIL.ASM *
*  HEX_CONV - HEXCONV.ASM STRINGEND - MAIN.ASM *
* HEX_ERR - MAIN.ASM STRING - MAIN.ASM *
*  MODIFY - MAIN.ASM *
K Kk k Kk Kk Kk ok ok ok Ak k ok k ok ok %k ok Kk Kk ok ke ok ok sk sk % Kk ke sk sk ok ok ok ok ok ke ok ok gk ke ke ok ok ok kR ok sk ok ok ok ok ok ok ok ok ke K

GLOBAL MEM DISPLAY,MEM MODIFY

EXTERNAL BUFFIN,BACKSPACES,END ADDRESS,ESC

EXTERNAL GET_ADDR, GETSTRING, HEX_ CONV,HEX ERR,MODIFY
EXTERNAL MONSTAT,OUTPUT BYTE, SCRL¥, SCROLL, SPACE, SPACES

EXTERNAL STRINGEND, STRING
*

MEM MODIFY:BSET.B #MODIFY, MONSTAT SET MODIFY FLAG
BSR MEM DISPLAY DISPLAY MEMORY
BCLR.B #MODIFY,MONSTAT CLEAR MODIFY FLAG
RTS
*
* THIS PROGRAM LIST THE CONTENTS OF THE SPECIFIED
*
MEM_DISPLAY:CMPI.B #SPACE, (A0) DOES BUFFIN(I)
* CHAR = SPACE?
BNE START_ADDR - NO, GET START & END
* ADDRESS
ADDQ.W #1,A0 - YES, SO I <-- I+1
SUBQ.B #1,BUFFIN DECREMENT BUFFIN LENGTH
BRA MEM DISPLAY CONT SCANNING BUFFIN
START_ADDR: BSR GET_ADDR CONVERT ADDRS TO HEX
BCLR.B #HEX_ERR,MONSTAT WAS THERE AN HEX ERROR ?
BNE MD_EXIT - YES, SO EXIT
NEWLINE: BSR SCRLF MOVE CURSOR TO NEXT LINE
BSR LINE_ NUMBER DISPLAY LINE ADDRESS
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GETABYTE:

WORD_SPACE: MOVE.

MD_EXIT:

*

MOVE.
BSKR
BTST

BEQ
BSR
BCLR
BNE

BSR
MOVE
MOVE
SUB.L
BLT
ANDI.
BNE
BSR
CMP.B
BEQ
BRA
BSR
RTS

LINE NUMBER:MOVE.

*

CHANGE :

CHGAGIN:
MORE_CHAR:

ROR.L
BSR
ROR.L
BSR
ROR.L
BSR
ROR.L
BSR
MOVE.
BSR
RTS

MOVE .W
BCLR.B
BSR
BSR
BCLR.B
BEQ
MOVE .B
BEQ

CMPI.B
BNE
BSR
BTST.B
BNE
MOVE .B
ADDQ.W

B (A2)+,D0
OUTPUT_BYTE

#MODIFY, MONSTAT

WORD_SPACE
CHANGE

#HEX ERR, MONSTAT

MD EXIT

SPACES

END_ADDRESS, D1

B
W #2,D2
L
L

A2,D0
DO, D1
MD EXIT
B #S$0F,DO
GETABYTE
SCROLL
#ESC, DO
MD EXIT
NEWLINE
SCRLF

L A2,D0
#8,D0
OUTPUT BYTE
#8,D0
OUTPUT BYTE
#8,D0
OUTPUT_BYTE
#8,D0
OUTPUT BYTE

W #4,D2
SPACES

#2,D2

DO <--~ (START ADDRESS)
OUTPUT BYTE TO CRT
TS MEMORY MODIFY STATUS
BIT SET ?
- NO, SKIP CHANGE
- YES, MODIFY MEMORY
CLR HEX STATUS BIT ERROR
IF ERROR EXIT
SETUP FOR 2 SPACES
OUTPUT 2 SPACES TO CRT
GET END ADDRESS
DO <- START ADDRESS
D1<--END ADDR-START ADDR
IF START > END THEN EXIT
DOES L.S. NIBBLE = 0 ?
~ NO, GET ANOTHER BYTE
SCROLL PAUSE CHECK
ABORT SCROLL ?
- YES, SO EXIT
-~ NO, START A NEW LINE
MOVE CURSOR TO NEXT LINE

GET CURRENT ADDRESS

MOVE M.S. BYTE TO L.S. BYTE
DISPLAY BYTE ON CRT

MOVE M.S. BYTE TO L.S. BYTE
DISPLAY BYTE ON CRT

MOVE M.S. BYTE TO L.S. BYTE
DISPLAY BYTE ON CRT

MOVE M.S. BYTE TO L.S. BYTE
DISPLAY BYTE ON CRT

SETUP FOR 4 SPACES

OUTPUT 4 SPACES TO CRT

# STRING, MONSTAT

BACKSPACES
GETSTRING

# STRINGEND, MONSTAT

MORE_CHAR
BUFFIN, D3
NO_ENTRY

#2,D3
CHGAGIN
GET DATA

#HEX_ERR, MONSTAT

CHG_EXIT
D2,= (A2)
#1,A2
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SETUP FOR 2 BCKSPCES
SET FOR NEW STRING
MOVE 2 SP TO THE LEFT
GET ANY NEW CHARACTERS
CHECK FOR END OF STR
IF MORE STRING, BRANCH
GET STRING LENGTH
IF STR LEN=0
THEN NO ENTRY
DOES STRING LEN = 2 ?
- NO, THEN RE-ENTER
CONVERT BYTE TO HEX
IS THERE A HEX ERROR ?
- YES, EXIT
BUFFIN(I) <-- HEX




NO_ENTRY:

CHG_EXIT
*

GET_DATA

DATALOOP

*

DATAEXIT

CLR.W
MOVE.B
NEG.W
ADDQ.W
BSR
RTS

CLR.L
CLR
MOVE.B
SUBQ
LEA
MOVE.B
BSR
BTST.B
DBNE

RTS
END

D2
D3,D2
D2
#4,D2
SPACES

D2

D4

BUFFIN, D4

#1,D4
BUFFIN+1,A0
(AO)+,D0
HEX_CONV
$HEX_ERR, MONSTAT
D4, DATALOOP
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GET STRING LENGTH

D1 <- - (STRING_LENGTH)
ADJUST SPACE COUNT
SPACE TO END OF BYTE

CLEAR HEXBUF
CLR WORD FOR DBCC INDEX
GET BUFFIN LENGTH
ADJUST FOR DBCC INST
INITIALIZE BUFFING PNTR
GET CHAR FROM BUFFIN
CONV ASCII CHAR TO HEX
IS THERE A HEX ERR ?
IF MORE CHARS,

THEN LOOP AGAIN




% %k ok Kk kK ok ok ok ok ok ko k Kk ke %k ok sk ok %k %k ok gk ok ke ok ok ok vk ok ke ok gk ok sk vk ok gk e ok sk ok ok ke Kk gk ok ok R ok ok ok ok ok ok ok ok ok ok

* THIS PROGRAM CONVERTS THE CONTENTS OF D0<7..0> FROM *
* ASCII TO HEX AND STORES THE RESULT IN REG D2. *
K gk ok ok ok kK K Kk Kk ok ke ok %k sk ok sk %k vk %k gk ke sk sk % sk ok sk vk ok sk ok ok ok ok gk %k gk ok gk %k ok ok sk gk ok ok ok %k ok ke Kk %k ok ok kK ke ok X
* WRITTEN BY DR. LARRY ABROTT *
%k ok K Kk ok Kk ok ok ko %k ok k% sk v sk sk ke ok ok %k %k sk %k sk sk kR ke ok gk %k ok ok ok vk sk ke ok Kk ok %k sk ke ke ok %k %k ok ok ke ke ok %k kK
* FILENAME: HEXCONV.ASM *
KEAKXA KA AAKAAA A A A A KAAARAAAA A A A AKX A A AARAR A AAAAAKR KR AR R A AR KAk hkhkhkhkhkhkkhkkkixk
* VERSION 1.3 *
*x REV. MODIFIED BY DATE DESCRIPTION *

* A DAVID M. SENDEK 1 OCT 87 DOCUMENTATION UPGRADE *

%k ok Kk ok ok ke k% ok k Kk ok ok ok ok ke %k sk sk ok ke ke %k ok sk ok Kk ok ok ok ok gk ke ke ok ok ok sk ok ke ok ok %k ok ok ok ok ok ko ok ok ke kX

* DEFINING MODULES OF EXTERNALLY DECLARED VARIABLES: *
*  HEX_ERR - MAIN.ASM *
*  MONSTAT - MAIN.ASM *
% kK ko %k Kk Kok sk ok ok ko k %k gk ok Kk ko ok ok sk ok k ok ok sk ok sk ok ke %k ok ok %k sk ke ok ok gk sk ke ok ok ok ok ok ok Kk ok ok kK ok ok ok ke ok
GLOBAL HEX_CONV
EXTERNAL  HEX_ERR, MONSTAT
*
HEX_CONV: SUB.B #530,D0 ADJUST ASCII TO
* HEX BASE
CMPI.B #9,D0 IS CHARACTER <= 9 ?
BLS.S ZERO_CHECK - YES, CHECK >= 0
SUB.B #7,D0 ADJUST FOR A-F
CMPI.B #$A,D0 IS CHARACTER >= A ?
BCS.S HEXERR - NO, HEX ERROR
CMPI.B #$F,DO IS CHARACTER <= F ?
BHI.S HEXERR - NO, HEX ERROR
ZERO_CHECK:CMPI.B #0,D0 IS CHARACTER >= 0 ?
BMI.S HEXERR - NO, HEX ERROR
BSR HEX_SHIFT HEX # INTO
* HEX BUFFER
BCLR.B #HEX_ERR,MONSTAT CLR HEX CONVERSION
* ERROR STATUS BIT
BRA.S HEX EXIT EXIT HEX CONVERSION
HEXERR: BSET.B #HEX ERR,MONSTAT SET HEX CONVERSION ERROR
* STATUS BIT
HEX_EXIT: RTS
*
HEX_SHIFT: LSL.B #4,D0 SHIFT L.S. NIBBLE TO M.S. NIBBLE
MOVE.W #3,D1 SET FOR INDEX TO 4 SHIFTS
NIBBLE_SHF:LSL.B #1,D0 SHIFT HEX CHARACTER OUT
ROXL.L #1,D2 SHIFT INTO HEX BUFFER
DBF D1,NIBBLE_SHF BRANCH IF MORE BITS
RTS
END
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% %k ok Kk k %k %k ok kK ok %k sk %k ok ok Kk sk %k ok vk ok ok ok ok sk %k ok sk ok ok v ok ok %k ok Tk sk e ok gk ok R ok A ok ok sk ok ok ko ok ok ok ok ok ok ok

* THE GO ROUTINE EXECUTES A PROGRAM FROM THE MONITOR. *
* THE FORMAT IS: *
* GO <start address>, [optional breakpoint] *
AAKAIAAXKAA A A A AAKA K KA AR KA KA KA A AR K AR A A XA A ARk hkhkAkhkhkkhk kA hkhkkhkhkhhAkkkhkxxk
* WRITTEN BY DR. LARRY ABBOTT *
* Kk ok ook ok ke kK %k ok ok Kk sk sk sk ok ke ok ke sk sk ok ok sk ok dk ok ok ke ok ok sk ok ok ke ke ke ke ke ok ok ke ok ko ok ok ke ok gk ok ok ok ok kK kK
* FILENAME: GO.ASM *
dod ok ok ok ok ok ok ke ok ok ok ok ok ok ok ok ok ok kR ok ok kK %k ke ks ok ok ok K ok ok ok ok sk ok ok ok ok sk b ok ok ok ok ok sk ok ok ok ok ok b ok ok ok ok
* VERSION 1.3 *
* REV. MODIFIED BY DATE DESCRIPTION *
* A DAVID M. SENDEK 1 OCT 87 DOCUMENTATION UPGRADE *
* B DAVID M. SENDEK 5 OCT 87 BSET,BCLR ASSEMBLY *
* LANGUAGE CORRECTION *
% %k %k Kk Kk ok ok ok ok Kok ok ok ok sk K Sk ok Kk ok sk sk ok ok Kk ok ok sk ok ok Sk sk sk ok ok ok vk ok ok ok ke ke ok ok ok ke ke ok %k ok ok R ok ok ok ok ok ok
* DEFINING MODULES OF EXTERNALLY DECLARED VARIABLES: *
*  BKPTAB - MAIN.ASM ILLMSG - MESSAGE.ASM *
*  BKPTMSG - MESSAGE.ASM MESSAGE - MESSAGE.ASM *
*  BTLEN - MAIN.ASM MONSTAT - MAIN.ASM *
* BUFFIN - MAIN.ASM OUTPUT_BYTE - BYTEOUT.ASM *
* CONTINUE - MAIN.ASM SCRLF - IO_UTIL.ASM *
* CMD DECODE - DECODER.ASM SPACE - MAIN.ASM *
* GET_ADDR - GET_ADDR.ASM STRING - MAIN.ASM *
* GETSTRING - GETSTRIN.ASM STRINGEND - MAIN.ASM *
*  HEX_ERR - MAIN.ASM SYSTAX - MAIN.ASM *
koK Kk ok ok ok ok ok ke ko k kK ok ko k k ke gk ke k %k ke ok ok ok ok %k ke ok gk gk kb ok ko gk sk ok ok ok ok ok ok ok sk ok sk ok ke ok ok ke ok ok ok ke

GLOBAL BKPT, GO

EXTERNAL BKPTAB,BKPTMSG,BTLEN, BUFFIN, CONTINUE
EXTERNAL GET_ ADDR,GETSTRING,LEX ERR, ILLMSG,MESSAGE
EXTERNAL OUTPUT BYTE, SCRLF, SPACE, STRING, STRINGEND
EXTERNAL MONSTAT, SYSTAX,CMD_DECODE

TRAPO EQU $4E40 OP CODE FOR TRAP #0

*

GO CMPI.B #SPACE, (A0)+ IS BUFFIN(X) A SPACE ?
BNE GO_ADDR - NO, GET GO ADDRESS
SUBQ.B #1,BUFFIN ~ YES, ADJUST BUFFIN LENGTH
BRA GO - YES, SCAN FOR NEXT SPACE

GO_ADDR SUBQ #1,A0 ADJUST FOR POST INCREMENT
BSR GET_ADDR A2<-GO ADDR, A3<-BREAKPOINT
CMPA #0,A2 IS THERE A START ADDRESS ?
BEQ CONTINU ~ NO,THIS IS A CONTINUATION
BCLR.B #4,MONSTAT CHECK FOR HEXCONV ERROR
BNE GO_EXIT IF HEX ERROR THEN EXIT
MOVEA.L SYSTAX, A0 ELSE GET SYSTAX POINTER
MOVE.L A2, (A0) SYSTAX (PC) <-- GO ADDRESS
CMPA #0,A3 IS THERE A BREAKPOINT ?
BEQ GO_EXIT - NO, SO EXIT
LEA BKPTARB, A0 SET BREAK TAB POINTER
MOVEA.L A3, (A0) STORE BREAKPOINT IN TABLE

MOVE.W (A3),BTLEN(A0) STORE INSTRUCTION AT BKPT
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MOVE .W

GO_EXIT RTS

* THE BREAKPOINT (BKPT)

#TRAPO, (A3)

* AT THE BREAKPOINT

BKPT: BCLR.B
LEA
MOVE.L
MOVE.W
LEA
BADINST BSR
MOVE.L
MOVE.W
ADDROUT ROL.L
BSR
DBF
BSR
SUBQ.L
MOVE.L
EXAMINE BSR
BCLR.B
BEQ
BCLR.B
BSR
BCLR.B
BEQ
RTE
END

STORE ILL INSTRUCT AT BKPT
CONTINU:BSET.B #CONTINUE, MONSTAT

#CONTINUE, MONSTAT

BKPTAB, A0
(A0) ,A3

16 (A0), (A3)
BKPTMSG, A5
MESSAGE
a3,D0

#3,D3
#8,D0
OUTPUT_BYTE
D3, ADDROUT
SCRLF
#2,2(SP)
SP, SYSTAX
GETSTRING

# STRINGEND, MONSTAT

EXAMINE
#STRING, MONSTAT
CMD DECODE

#CONTINUE, MONSTAT

EXAMINE
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SET CONTINUE FLAG

ROUTINE RESTORES THE INSTRUCTION

INIT CONTINUATION FLAG
SET BREAK TABLE POINTER
GET BKPT ADDRESS
RESTORE INSTRUCTION

SET BREAKPOINT MESSAGE
PRINT MESSAGE
GET BKPT ADDRESS

SET BYTE INDEX
ROTATE DO BY 1 BYTE
CRT <-- DO0<0..7>
MORE ADDRESS THE LOOP
MOV CURSOR TO STRT OF LINE
ADJUST RETURN ADDRESS
SAVE POINTER TO RETURN ADDR
ALLOWS EXAM AT BKPT
END OF STRING ?

- NO, SO LOOP
CLEAR NEW STRING FLAG

IF END THEN DECODE

IS THIS A CONTINUATION ?

- YES, LOOP AGAIN




de A e e ok ok sk sk ok sk ke ok sk sk sk ke ok e b sk e ke ok kb e e ke ok kb ke e ok sk ke sk e e ke A e e o e ko ke kb o e ok b ok ok ok ke

* THIS FILE CONTAINS PROGRAMMING STUBS TO COMPLETE THE *
* LINKING PROCESS WHILE BUILDING AND TESTING HIGHER *
* LEVEL MODULES. *
AR KAKAKKRARKAKRAKA A R A AR A XA AR AAKRAKk AR Ak Ak hkkhkhkrkhkkhkkhkhkhkkkkkhkhkkkkkxk
* WRITTEN BY DR. LARRY ABBOTT *
KhkkhkAXkhkkRkkhkhkhkhkkhkhkhkhkrhhkhkkhkkhkhrkhkhkkkhhkkhkhkkhkkkhkhkkkhkhkkkkhkkkkkk
* FILENAME: STUB.ASM *
KA KA AR KAAAR A A A AXA R AA AR Ak Ak kAAkRkkhkhhkhkhkhkkkdxhkkkkkkkkkkkkkxk
* VERSION 1.3 *
* REV. MODIFIED BY DATE DESCRIPTION *
* A DAVID M. SENDEK 1 OCT 87 -DOCUMENTATION UPGRADE *
* -INCORPORATE PROMPT MSG  *
khkkhkkhkkhkhkhhAhkhkhkkkkhkhkhkkkhkkhkhkhkhhkhkhkhkhkkhkrhkkhkhkkkhkhkhhkhkhkkkkkkkkkkkhk
* DEFINING MODULES OF EXTERNALLY DECLARED VARIABLES: *
*  PROMPT - MESSAGE.ASM x
*  MESSAGE - MESSAGE.ASM *

IS S EEEREE SRR R R RERERERRR R RS R R R R R R RRRERRREEEEEREEEEEEEEES]

GLOBAL BKPT_LIST,NO_BKPT
EXTERNAL PROMPT,MESSAGE

BKPT_LIST:LEA PROMPT, AS
BSR MESSAGE
RTS

NO_BKPT: LEA PROMPT, A5
BSR MESSAGE
RTS
END
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* THIS ROUTINE PRINTS OUT THE CONTENTS OF THE REGISTERS. *
KA R KKK KK KA KRR KK KK KR AR AR KA A KKK KRR RRRRRKR KKK RR A KRR KKK kR K KK KKKk K
* WRITTEN BY DR. LARRY ABBOTT *
XK KA KRR KKK AR KKK KRR KR ARR AR A KRR KRR RRRR K KRR R KA AR AR KK RAK K K Kk K kK
* FILENAME: REG.ASM *
KRR Ik kAR kKKK AR KKK AR AR R KRR KRR AR KRR R AR KKK KRR AR AR A AKX Kk Rk kKKK
* VERSION 1.3 *
* REV. MODIFIED BY DATE DESCRIPTION *
* A DAVID M. SENDEK 1 OCT 87 DOCUMENTATION UPGRADE *

* Jk d de dr Kk ok de ok vk ok e gk ok d Kk ke vk ok de sk e sk v sk s ok e ke dk sk k% ke ke ok ke ok e ke ke ke ke sk b ke ok ok ok ok ok ok Kk kK ok k&

* DEFINING MODULES OF EXTERNALLY DECLARED VARIABLES: *

* MESSAGE - MESSAGE.ASM SCRLF - IO_UTIL.ASM*
* QUTPUT_BYTE - BYTEOUT.ASM SPACES - IO _UTIL.ASM*
* REGMSG - MESSAGE.ASM SYSTAX - MAIN.ASM *

AAkhkkkRAXA AR IKRAAAKA KRR A A Ak ARk A Rk ARKRA A A AR AAkARA Ak Ak kAR kxkkk%x

GLOBAL REG
EXTERNAL  MESSAGE, OUTPUT_ BYTE, REGMSG
EXTERNAL  SCRLF, SPACES, SYSTAX
REG BSR SCRLF
LEA FEGMSG,A5 GET POINTER TO MESSAGE
MOVEA.L SYSTAX,A2 GET STACK POINTER AT MONITOR
* ENTRY
SUB.L  #$40,A2 OFFSET OF THE STACK
MOVE.W #15,D3 SET REGS CNTR FOR 16 REGS
REGLIST BSR MESSAGE PRINT PART OF REGISTER MESSAGE
MOVE.W #3,D4 SET FOR 32-BIT REGISTER
BSR REG_DUMP  PRINT CONTENTS OF A REGISTER
DBF D3,REGLIST IF MORE REGS, THEN GO TO
* REGLIST
BSR MESSAGE PRINT "SR ="
MOVE.W #1,D4 SET FOR 16-BIT REGISTER
BSR REG_DUMP PR CONTENTS OF STAT REG (SR)
MOVE.W #4,D2 SET FOR 4 SPACES
BSR SPACES PRINT 4 SPACES
BSR MESSAGE PRINT "PC ="
MOVE.W #3,D4 SET FOR 32-BIT PC REGISTER
BSR REG DUMP  PRINT CONTENTS OF PC REGISTER
MOVE.W #1,D2 SET FOR 1 SPACES
BSR SPACES PRINT 1 SPACES
BSR MESSAGE PRINT " (PC) ="
SUBQ.L #4,A2
MOVE.L (A2),A2
MOVE.W #1,D4 SET FOR WORD POINTED TO BY PC
BSR REG DUMP  PRINT CONTENTS OF WD PNTD BY PC
BSR SCRLF FORMAT DISPLAY
RTS
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*

REG_DUMP MOVE.B (A2)+,D0 GET A BYTE OF THE REG

* FROM APPLICATION PSW
BSR OUTPUT_BYTE OUTPUT BYTE TO CONSOLE
DBF D4,REG_DUMP IF MORE BYTES THEN REG_DUMP
RTS ELSE EXIT
END
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IR RS SRR SRS RRERERSREERERERS SRR SRS SRR SR ERER AR RS SR ER SRR RRSSR,

* THIS ROUTINE CHANGES THE CONTENTS OF DESIRED REGISTERS. *
KRR K KR KKK K KRR KK AR K KKK KK KR KK AR R K KA AR KA AR KRR KKK A KRR KRR A KRR KKK
* WRITTEN BY DR. LARRY ABBOTT *
AR KRR KRR KKK KA KK R KA AR K KRR KK RRR K AR KK AR RK KRR KRR A KR K K K k& Kk k k& kk KX
* FILENAME: REGCHANG.ASM *
AR KKK KKK IR KKK KRR KKK KKK F AR ARRK KKk Ik kAR Kk ok ok kKKK K ko kk k&K kok Kk
* VERSION 1.3 *
* REV. MCDIFIED BY DATE DESCRIPTION *
* A DAVID M. SENDEK 1 OCT 87 DOCUMENTATION UPGRADE *

I EEEEESEEEREERE RS SRS FEEEREREEREEERSERS R RS RRRRERRERER SRR RS

* DEFINING MODULES OF EXTERNALLY DECLARED VARTABLES: x
* BUFFIN - MAIN.ASM MONSTAT - MAIN.ASM *
* GET_ADDR - GET_ADDR.ASM REG - REG.ASM *
x REGERR - MESSAGE.ASM *
* HEX_CONV - HEXCONV.ASM SPACE - MAIN.ASM *
* HEX_ERR - MAIN.ASM SYSTAX ~ MAIN.ASM *
* MESSAGE - MESSAGE.ASM SCRLF ~ IO UTIL.ASM *
ARKEAKAKKAKEAKXAKKAKAAKXRKAKAAAKAAKA A KA KA R AA AL AR KR A AT A A A XA A AR A XA XA XA X X XXX
GLOBAL  REGCHANG
EXTERNAL BUFFIN,GET_ADDR, HEX_CONV, HEX_ ERR
EXTERNAL MESSAGE,MONSTAT, REG, REGERR, SPACE, SYSTAX, SCRLE
*
ESC EQU $1B
*
*
REGCHANG: BSR REG DISPLAY REGISTERS ON CRT
BLANKSCAN:MOVE.B (AO) +,D0
SUBQ.B #1,BUFFIN DECREMENT BUFFIN LENGTH
CMPI.B #SPACE,DO  DOES BUFFIN(I) CHAR = SPACE 2
BNE START_REG - NO, GET START AND END ADCR
BRA BLANKSCAN  CONTINUE SCANNING BUFFIN
START REG:CMPI.B #ESC,D0 DOES D0 = ESC (ASCII) 2
BEQ REG_DONE ~ YES, RTS
CMPI.B #'A",DO DOES DO = ’A’ ?
BEQ REGA - YES, ADJUST POINTER
CMPI.B #'D’,D0 DOES DO = ’D’ ?
BEQ REGD - YES, ADJUST POINTER
CMPI.B #'P’,D0 DOES DO = /P’ 2
BEQ REGP ~ YES,CK FOR ‘C’ & ADJUST PNTR
CMPI.B #’U’,DO DOES DO = ‘U’ ?
BEQ REGU - YES, CHECK FOR 'S’
CMPI.B #’S’,DO0 DOES DO = 'S’ 2
BNE PRINTERR - NO,PRINT ERR D0 <> A,D,P,U,S
MOVE.B (A0)+, DO GET SECOND CHAR OF CCMMAND LINE
SUBQ.B #1,BUFFIN SUBTRACT 1 FROM BUFFIN
CMPI.B #’'P’,DO0
BEQ REGSP
CMPI.B #’R’,D0
BEQ REGREP
CMPI.B #’S’,DO
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REGA:
REGD:

REGP:

REGU:

REGSP:

PRINTERR:

REGFIN:

REGREP:

RCA:

FFF:

REG_DONE :

BNE
MOVE.
BRA
MOVE.
BRA
MOVE.
BRA
MOVE.
SUBQ.
CMPI.
BNE
MOVE.
BRA
MOVE.
SUBQ.
CMPI.
BNE
MOVE.
BRA
MOVE.
BRA
LEA
BSR
BRA
MOVE.B
SUBQ.B
CLR.L
BSR
BTST.B
BNE
LSL.L
ADD.L
LEA
MOVE.L
ADD.L
CMPI.B
BNE
ADDQ.W
SUBQ.B
BRA
BSR
MOVE.L
BSR
RTS

=t Oww ¢ wWwow o

(o

PRINTERR
#-4,D3
REGREP
$-32,D3
REGF IN
#-64,D3
REGFIN
(A0) +,DO
#1, BUFFIN
$'Cc’,D0
PRINTERR
¥2,D3
REGREP
(AO) +,D0
¥1, BUFFIN
$’s’,D0
PRINTERR
#-4,D3
REGREP
#-4,D0
REGREP
REGERR, A5
MESSAGE
REG_DONE
(AO) +,DO
#1, BUFFIN
D2
HEX_CONV
$HEX ERR, MONSTAT
PRINTERR
¥2,D2
D2,D3
SYSTAX, Al
(Al),Al
D3,Al
#SPACE, (A0)
FFF

#1,A0
#1,BUFFIN
RCA
GET_ADDR
A2, (A1)
REG
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AAKEA KA RKAKRK KA A IR A AR A AR A AT I KRA AT RAAAAAA KA AR KRR KA AR AKX kK hk k&

* DOWNLOAD ALLOWS THE MONITOR TO DOWNLOAD Sxx RECORDS TO ITS*

* RESIDENT 680XX MICROCOMPUTER OVER A SECOND RS-232 PORT. *
ARXAKAA KA KR ARKKAAARAARARAR A AR AR Ak hkhkhkhkdkhkhkhkkkhkdhkhkhkkhkkkkhkkkxhkhkkkkkkikk
* WRITTEN BY DR. LARRY ABBOTT APRIL 24, 1986 *
AhkkhkkhkhkrhbhkhAbhkhkAhhhbhkhkhhbhhbrhhkhbhhbhhbhkhbhbkhkhbhhkhkhbrhhkhkidkhhkhkkkkhkhkkkkxk
* FILENAME: DOWNLOAD.ASM *
AAKAKXAKAKAAKRKAKARKRARAAA KR A AAARA A A A A A bk bkrr bk kbbb bk A AR A A A kA X
* VERSION 1.3 *

REV. MODIFIED BY DATE DESCRIPTION

LARRY ABBOTT 12/18/86 INIT DEBUG PROCESS

DAVID M. SENDEK 1 OCT 87 -DOCUMENTATION UPGRADE

-CORRECT FOR MC68681
DAVID M. SENDEK 5 OCT 87 BCLR,BSET ASSEMBLY
LANGUAGE CORRECTION

DAVID M. SENDEK 4 JAN 88 -~CORRECT DOWNLOADING OF
S1,S9 FORMAT RECCRDS.
NOTE:FINAL S9 RECORD WILL*
HAVE A ’*’/ AFTER LAST *
CHARACTER IN THE RECORD *

*
*
*
*
*
*
*
*
*
*
*
de e K Ak gk Kk ke de ok ok ke sk Kok ek ke k ki ki k ke ke ok ke ke ko ke ko ok ok kR ko ke ok kR kA Kk ke ke ke k AR Rk kA ok
*
*
*
*
*
*
*
*
*
*
*
*x

o o oy

* * % X A X X X

DEFINING MODULES OF EXTERNALLY DECLARED VARIABLES: *
CHECKSUM MAIN.ASM CK_SUM - MAIN.ASM
ECHO1 - CONSOLE.ASM ECHO2 - CONSOLE.ASM

EPROMRNG - MAIN.ASM EPROMSG
EPROMWR - MAIN.ASM

HEX_CONV - HEXCONV.ASM  SCRLF
HEX_ERR
HEXMSG

MESSAGE .ASM

*x
*
*x
*
I0_UTIL.ASM *
MESSAGE .ASM *
x
*
*
*
*

MAIN.ASM SREC_ERR
MESSAGE .ASM SCANCHR2
MESSAGE MESSAGE.ASM SPACES
MONSTAT MAIN.ASM SRB MAIN.ASM
RECFULL - MAIN.ASM GETCHRZ CONSOLE.ASM

KAk KAk AKA ARk A ARk Ak hkkkkhkhkkkkhkhkhkkhkhkkkhkhhkdkhkkkkkkkkhkkkxxk

CONSOLE . ASM
I0_UTIL.ASM

GLOBAL DOWNLOAD

EXTERNAL CHECKSUM,CK_SUM, ECHOl,ECHOZ2, EPROMRNG, EPROMSG
EXTERNAL EPROMWR, ESCAPE

EXTERNAL HEX_CONV,HEX_ERR, HEXMSG, MESSAGE, MONSTAT
EXTERNAL RECFULL, SCRLF, SREC_ERR

EXTERNAL SCANCHRZ2, SPACES

EXTERNAL SRB, GETCHR2

*
*
*x

DOWNLOAD :BSR SCANCHR2 DO DUMMY RD TO CLR CHAN B
BTST.B #RECFULL, SRB ANY THING ELSE IN CHAN B ?
BNE.S DOWNLOAD - YES,SCAN CHANNEL B AGAIN
BSR SCRLF ECHO CR & LF TO CRT

DOWNLOOP :BCLR.B #HEX_ ERR,MONSTAT CLEAR HEX ERROR FLAG

S_LOOP BSR GETCHR2 GET A CHAR FROM DWNLNK PORT
BTST.B #ESCAPE,MONSTAT ESC THE DOWNLOAD PROCESS ?
BNE DOWNEXIT - YES, EXIT
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CMPI.B
BNE
BSR
MOVE.W
BSR
BSR
CMPI.
BEQ
CMPI.
BEQ
CMPI.
BEQ
ADDQ.
CMPI.
BEQ
ADDQ.
CMPI.
BEQ
LOADERR: LEA

(ve}

s WE W w

BSR

DOWNEXIT:BSR
LEA

*
BCLR.B
BEQ.S
RTS

ERRMSG: BSR
RTS

S_RECORD:BSR
BCLR.B
BEQ
LEA
BRA

*

S9_RECORD:BSR
BTST.B
BEQ
RTS

*

SN_RECOKD:CLR.W
CLR.B
BSR
BTST.B
BNE. S
MOVE . W
SUB.W
SUBQ.W
MOVE .W

$'s’,D0
S_LOOP
ECHO2
#1,D3
GETCHR2
ECHO2
#/0’,D0
S_RECORD
#’1’,D0
S_RECORD
$79',D0
S9_RECORD
#1,D3
$72',D0
S_RECORD
$1,D3
#737,D0
S_RECORD
SREC_ERR, AS

ERRMSG

SCRLF
EPROMSG, A5

#EPROMWR, MONSTAT
ERRMSG

MESSAGE

SN_RECORD
#HEX_ERR, MONSTAT
DOWNLOOP
HEXMSG, AS

ERRMSG

SN_RECORD
#HEX_ERR, MONSTAT
DOWNEXIT

D6

CK_SUM

GETFIELD
¥HEX_ERR, MONSTAT
SN_EXIT

D2, D4

D3,D4

#2,D4

D3,D6

11

IS CHARACTER = 'S’ ?
~ NO, SEARCH FOR A 'S’
ECHO 'S’ TO CONSOLE
SET FOR 16-BIT ADDR
GET A CHAR FROM DWNLNK PORT
ECHO DWNLNK CHAR TO CONSOLE
IS THIS A SO RECORD ?
- YES, GO TO S RECORD
IS THIS A S1 RECORD ?
- YES, GO TO S RECORD
IS THIS A S9 RECORD ?
- YES, GO TO S9 RECORD
SET FOR 24-BIT ADDR
IS THIS A S2 RECORD ?
- YES, GO TO S RECORD
SET FOR A 32-BIT ADDRESS
IS THIS A S3 RECORD ?
- YES, GO TO S RECORD
IF NO Sxx RECORD
; THEN /S RECORD ERROR’ MSG

ECHO CR & LF

SET UP

"ATTEMPTED WRITE TO EPROM"

WAS THERE A WRITE TO EPROM?
- YES, PRINT ERROR MESSAGE

PRINT ERROR MESSAGE

PROCESS S RECORD
IF NOT HEX CONVERSICN ERR
THEN GET NEXT RECORD
ELSE HEX CONV ERROR MSG
PRINT ERRCR MSG

PROCESS S RECORD
IF HEX CONVERSION ERROR
THEN TERMINATE XMISSION

SET FOR 1 BYTE

CLEAR CHECK SUM

GET DOWNLOAD FIELD

IF HEX CONVERSION ERROR
THEN EXIT SN_RECORD

D4<-HEXBUFFER (S REC LEN)

LEN = (S REC LEN) - ADDR

ADJST FOR DBF INST & ADDR

SET ADDRESS SIZE

3




SN_EXIT
*

DOWN_DATA

*

EPROMERR
CHK_SUM

LOOP_END

ERRCHECK
ERR_MARK
DD_EXIT

*

GETFIELD
LOOPINIT
*

GF_LOOP

*

BSR
BTST.B
BNE.S
MOVE.L
BSR
RTS

BSR
BSR

CLR.L
BSR
BTST.B
BNE.S
BSR
BSR
CMPA.L
BLS.S
BSR
MOVE.B
BRA.S
BSET.B
ADDQ.L
TST.W
BEQ.S
ADD.B
DBF
NOT.B
MOVE.B
CMP.B

BEQ.S

MOVE.L
BSET.L
MOVE.L
BRA.S
BTST.B
BEQ.S
MOVE.W
BSR
BSR
RTS

CLR.L
MOVE.W

BSR
BSR

BSR
BTST.B

GETFIELD

#HEX ERR,MONSTAT

SN_EXIT

DOWN_DATA

GETCHR2
ECHO2

D2
HEX CONV

#HEX ERR, MONSTAT

DD_EXIT
GETCHR2
ECHO2

#EPROMRNG, A0

EPROMERR
HEX_CONV
D2, (A0Q)
CHK_SUM

#EPROMWR, MONSTAT

#1,A0
D4
LOOP_END

D2,CK_SUM
D4,DOWN DATA

CK_SUM ~
—(AO) ,DZ

CK_SUM, D2

ERRCHECK

MONSTAT, D3
#CHECKSUM, D3
D3, MONSTAT

ERR_MARK

#EPROMWR, MONSTAT

DD_EXIT
$'*7,D0
ECHC1
SCRLF

D2
#1,D5

GETCHRZ2
ECHOZ2

HEX_CONV

GET ADDRESS FIELD

IF HEX CONVERSION ERROR
THEN EXIT SN_RECORD

A0 <-- LOAD ADDRESS

GET DOWN LOAD DATA

GET FIRST CHARACTER
ECHO DWNLD CHARACTER
TO CONSOLE

CONVERT CHAR TO HEX
IF HEX CONVERSION ERROR
THEN EXIT DOWN_DATA

GET SECOND CHARACTER

ECHO DWNLD CHAR TO CONSOLE
IS THIS A WRITE TO EPROM?
- YES, GO TO EPROMERR

CONVERT CHARACTER TO HEX

LOAD BYTE INTO MEMORY

FLAG EPROM WRITE
INCREMENT MEM LOAD ADDR
ARE NXT CHARS CHECK SUM ?
- YES,DONT ADD TO CHK SUM

ACD THIS BYTE TC CHK SUM
IF MORE DATA THEN LOOP
COMPLEMENT CHECK SUM
GET COMPUTED CHECK SUM
COMP CALC’S AND
XMIT CHK SUMS
IF CHECK SUMS AGREE

THEN EXIT DOWNLOAD

SET FLAG IF CHECK SUM ERR

A WRITE TO EPROM ?
- NO, EXIT
- YES, MARK ERROR WITH *

ECHO CR & LF

CLEAR HEX BUFFER
SET COUNT TO
PACK 2 NIBBLES
GET DOWNLOAD CHARACTER
ECHO DOWNLOAD CHARACTER
TO CONSOLE
CONVERT ASCII CHAR TO HEX

#HEX_ERR,MONSTAT IF HEX CONVERSION ERROR

114




GF_EXIT

BNE.S
DBF
ADD.B
DBF
RTS
END

GF_EXIT

DS, GF_LOOP
D2, CK_SUM
D6, LOOPINIT
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THEN EXIT GET FIELD
GET SECOND NIBBLE
COMPUTE CHECK SUM
IF MORE CHARS THEN LOOP

ELSE EXIT




Khkhkhkhkhkhk kXX K AkKAAAAKIAAAAA A KA KAA KR A A kKRR Ak Ak hkhkhkhkhkhk bk kkhkkkkkkothk itk xkx

* THIS ROUTINE IS VECTORED TO BY ALL EXCEPTIONS THAT *
* LACK A DEFINITE EXCEPTION SERVICE ROUTINE. *
% ok ke d ok Kk sk vk ke ke de e g sk vk e ok e gk Ak e ke e ok ke sk ok ok e e R ke ok kR ok ok ok ok ke gk ke Rk ok ok ok ke ok ok ok ok ok ok ok Kk ok ok
* WRITTEN °Y DR. LARRY ABBOTT *
% K e Kk de Kk ok ek ok ok ok vk kK ke ok ok ok ok gk ke ke ok ok sk dk ke ke ok ke sk sk ok sk ok ke ok ke sk ok Xk ke ok ki ke ke ok kA ko ke ke ok ok ok ok
* FILENAME: UNUSED.ASM *
e s e deode e vk e e de e s sk de ke ke e e e sk ok e e ke kb ek ok Rk ki k ke ok ok ok ok ok ok ok k k k ok ok ok ko ok Ak ok ok ok ok ok kK
* VERSION 1.3 *
* REV. MODIFIED BY DATE DESCRIPTION *
* A DAVID M. SENDEK 1 OCT 87 -DOCUMENTATION UPGPADE *
* -INCORPORATE A PROMPT *
Khkkdkhkhkhkkhkhkhkhkhkkhkhkhkhkkhkhkkhhkhkkhkkhhkhkhhkhhkhkkhkkhkhkhkkhkikhkkkkhkhkkkkkkkksk
* DEFINING MODULES OF EXTERNALLY DECLARED VARIABLES: *
* OUTPUT BYTE - BYTEOUT.ASM MESSAGE - MESSAGE.ASM *
* REG - REG.ASM SCRLF - IO_UTIL.ASM *
* SYSTAX - MAIN.ASM USEMSG - MESSAGE.ASM *
* PROMPT - MESSAGE.ASM *
AAkATEAKXAKKAKAKEKEAKRKRAARKA KA AR KARARKRA AR AR A RRARNARKR AR AAR KRR AR AR A ARk kA k ok kkk k%

GLOBAL UNUSED
EXTERNAL OUTPUT_BYTE,MESSAGE, REG, SCRLF, SYSTAX, USEMSG
EXTERNAL PROMPT

UNUSED:MOVEM.L SP, SYSTAX SAVE POINTER TO APPLICATICN
* REGISTERS
MOVEM.L AQ0-A7/D0-D7,-(SP) SAVE ALL REGISTERS
BSR SCRLF MOVE CURSOR TO NEXT LINE
LEA USEMSG, AS SET MSG POINTER TO MONMSG
BSR MESSAGE CRT<-UNUSED EXCEPTION MSG
MOVE.L SYSTAX,AS5 GET TOP OF STACK AT ENTRY
ADDQ.L #6,A5 POINT TO STACK FORMAT WORD
MOVE.B (A5)+,D0 GET FORMAT.HIGH
BSR OUTPUT_BYTE OUTPUT FORMAT.HIG
MOVE.B (AS),DO GET FORMAT.LOW
BSR OUTPUT_BYTE OUTPUT FORMAT.LOW
BSR SCRLF MOVE CURSOR TO NEXT LINE
BSR REG DISPLAY REGISTERS
MOVEM.L (SP)+,A0-A7/D0-D7 RESTORE ALL REGISTERS
RTE
END
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APPENDIX C: MINIMAL SYSTEM DIAGRAMS

The figures (Figs. C.1 through C.8) contained in this appendix
are discussed in Chapter IV. These figures were created using the
OrCAD/SDT III computer-aided design (CAD) tool. Each signal’s
source(s) and/or destination(s) are noted on the diagrams. It is,
however, the integration of these various components into a minimal

system that comprises the work that is original to this thesis.
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APPENDIX D: MINIMAL SYSTEM’'S PROGRAMMABLE LOGIC
DEVICE SOURCE CODE
In order to reduce the chip count, Altera EP310 erasable
programmable logic devices (EPLDs) were used within the minimal
system. Abel, a 1logic software design tool by Data 1I/O
Corporation, was used to program Altera EP310 EPLDs [Ref. 16:pp. 2-
57 - 2-62]. Abel files provides a high-level representation of the
logic to be implemented on the EP310s. The EP310 comes in a 20-pin
package. Nine pins are used strictly for input logic; one pin can
be used for input logic or as a clocked input; eight pins can be
used for input logic or output logic; the remaining two pins are
used for Vcc input and ground input.
The following Abel modules were implemented:
- minimal_system_address_decoder
- dtack_and bus_error_generation

- output_enable write enable
- interrupt_controller
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" THIS FILE USES DATA I/0’S ABEL DESIGN LANGUAGE
" TO GENERATE A JEDEC FILE TO PROGRAM AN ALTERA
" EP310 ERASABLE PROGRAMMABLE LOGIC DEVICE (EPLD).

MODULE minimal_system_address_decoder FLAG ’-X0’
TITLE ‘68010 ADDRESS DECODER FOR THE MINIMAL SYSTEM/

uel DEVICE ’'E0310’; "Abel V2 must be used for this device.

"DEFINE LABELS ASSOCIATED WITH INPUT AND OUTPUT PINS
" FOR THE EP310
" - INPUT PINS
al2,al3,al4,als5,ale,al?,al8,als,a20,a2l1,a22,a23,
as PIN 1,2,3,4,5,6,7,8,9,11,12,13,15;
" - QUTPUT PINS
cs681, romen, sramen PIN 16,18,19;

"ASSIGNMENT STATEMENTS

h =1; "HIGH
1 =0; "LOW
X = .X.; "DONT CARE
ramaddr = [a23,a22,a2l1,a20,al9,al8,al7,al6,als5,ald,
X)X R, XX, X, X, X)X, X, X, X, X,X];
romaddr = [a23,a22,a2l1,a20,al19,al8,al?7,al6,x,x,%,X,
RyXp XX, X, %, X, X, X)X, X, X} 7}
duartaddr = [a23,a22,a2l1,a20,al19,al8,al17,al6,al5,ald,

al3,al2,x, X, %X, X, X, %X, 5,X,%X,X,X,%);

"DEFINE EQUATIONS AS PER MEMORY MAP

" ! = INVERSION
" & = AND

" # = OR
EQUATIONS

sramen= (ramaddr >= ~h010000) & (ramaddr <= ~hQl13FFF) &!'as;
'cs681l= (duartaddr >= "“h7F7000) & (duartaddr <= "“h7F7FFF) &!as;
'romen = (romaddr <="hOOFFFF)&'as;

END minimal_system_address_decoder
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" THIS FILE USES DATA I/0’S ABEL DESIGN LANGUAGE
" TO GENERATE A JEDEC FILE TO PROGRAM AN ALTERA
" EP310 ERASABLE PROGRAMMABLE LOGIC DEVICE (EPLD).

MODULE dtack_and_bus_error_generation FLAG ’-X0’
TITLE 'DTACK AND BUS ERROR GENERATION FOR THE MINIMAL SYSTEM’

u64 DEVICE ’'E0310’; "Abel V2 must be used for this device.

"DEFINE LABELS ASSOCIATED WITH INPUT AND OUTPUT PINS
" FOR THE EP310
v - INPUT PINS
berr delay,rom_delay,sram_delay, romen,
dtack681,sramen PIN 1,8,9,11,13,16;

" - OQOUTPUT PINS
dtack,berr PIN 18,19;

"ASSIGNMENT STATEMENTS

h =1; "HIGH
1l = 0; "LOW
X = .X.; “"DONT CARE

"DEFINE EQUATIONS

" NOTE: ! = INVERSION
" & = AND

" # = OR
EQUATIONS

dtack=(!dtack681) # (sramen&sram_delay) # (! romen&rom_delay);
berr = berr_delay;

END dtack_and_bus_error_generation
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" THIS FILE USES DATA I/0’S ABEL DESIGN LANGUAGE
" TO GENERATE A JEDEC FILE TO PROGRAM AN ALTERA
" EP310 ERASABLE PROGRAMMABLE LOGIC DEVICE (EPLD).

MODULE output_enable write_enable FLAG ’-X1'
TITLE 'SRAM WRITE ENABLE AND SRAM AND ROM OUTPUT ENABLES FOR
THE MINIMAL SYSTEM’

u63 DEVICE ’'E0310’;"Abel V2 must be used for this device.

"DEFINE LABELS ASSOCIATED WITH INPUT AND OUTPUT PINS
" FOR THE EP310
" - INPUT PINS
rw,win,uds, 1ds, mas, as,pudsi,pldsi PIN 1,2,3,4,5,6,8,9;

" - OUTPUT PINS
oelb,weu34, weu35, oehb, pudso, pldso, pas
PIN 13,14,15,16,17,18,19;

"ASSIGNMENT STATEMENTS

h=1; "HIGH
1 =20; "LOW
X = .X.; "DONT CARE

"DEFINE EQUATIONS

" NOTE: ! = INVERSION
" & = AND

" # = OR

" rw = read

" !rw = write
EQUATIONS

'weu3d = !rw & !pldsi;
'weuld5 = !rw & !pudsi;
'loehb = rw & !pudsi;
'oelb = rw & !pldsi;

END output_enable write_enable
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" THIS FILE USES DATA I/0’S ABEL DESIGN LANGUAGE
" TO GENERATE A JEDEC FILE TO PROGRAM AN ALTERA
" EP310 ERASABLE PROGRAMMABLE LOGIC DEVICE (EPLD).

MODULE interrupt_controller FLAG ’-X1'
TITLE ‘INTERRUPT CONTROLLER FOR THE MINIMAL SYSTEM’

"THIS IS NOT UPWARDS COMPATIBLE FOR THE FULLY INTEGKATED SYSTEM
u00 DEVICE ’E0310’; "Abel V2 must be used for this device.

"DEFINE LABELS ASSOCIATED WITH INPUT AND OUTPUT PINS
" FOR THE EP310
" - INPUT PINS
al,a2,a3,as,irg681,fcl, fc2,£fc3 PIN 1,2,3,4,5,6,7,8;
" - OQUTPUT PINS
ipl0,ipll,ipl2,iracké681 PIN 16,17,18,19;

"ASSIGNMENT STATEMENTS

h=1; "HIGH
1l =20; "LOW
Xx = .X.; "DONT CARE

"DEFINE EQUATIONS

" NOTE: ! = INVERSION

" & = AND

111 # - OR

EQUATIONS

!irack681 = al & !'a2 & 'a3 & tas & fcl & £c2 & f£c3;
ipl0 = h;

ipl1 = h;

ipl2 = irq681;

END interrupt_controller
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APPENDIX E: SYSTEM DIAGRAMS

In this appendix are the wiring diagrams which implement the
master circuit board subsystem and system controller subsystem
which are discussed in Chapter IV. These diagrams were produced by
the OrCAD/SDT III computer-aided design (CAD) tool. It 1is,
however, the integration of these various components into a multi-
processor system that comprises the work that is original to this

thesis.
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